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In this paper, we propose a mass- and modified energy-conservative relaxation Crank–Nicolson finite
element method for the Schrödinger–Poisson (SP) equation. Utilising only a single auxiliary variable, we
simultaneously reformulate the distinct nonlinear terms present in both the Schrödinger equation and the
Poisson equation into their equivalent expressions, constructing a system equivalent to the original SP
equation. Our proposed scheme, derived from this equivalent system, is implemented linearly, avoiding
the need for iterative techniques to solve the nonlinear equation. Additionally, it is executed sequentially,
eliminating the need to solve a coupled large linear system. We in turn rigorously derive the optimal
error estimates for the proposed scheme, demonstrating second-order accuracy in time and (k + 1)th-
order accuracy in space when employing polynomials of degree up to k. Numerical experiments validate
the accuracy and effectiveness of our method and emphasise its conservation properties over long-time
simulations.

Keywords: Schrödinger–Poisson equation; mass and modified energy conservation; relaxation Crank–
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1. Introduction

Consider the Schrödinger–Poisson (SP) equation, also known as the Gross–Pitaevskii–Poisson equation
(Shukla & Eliasson, 2006; Cai et al., 2010; Cotner, 2016)

iut = −Δu + Φu + V(x)u + |u|2u, (x, t) ∈ Ω × (0, T], (1.1a)

− ΔΦ = μ(|u|2 − c), (x, t) ∈ Ω × [0, T], (1.1b)

u(x, 0) = u0(x), x ∈ Ω . (1.1c)

© The Author(s) 2026. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained

through our RightsLink service via the Permissions link on the article page on our site—for further information please contact
journals.permissions@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf117/8413501 by The U
niversity of Texas at El Paso user on 05 January 2026



2 H. LIU ET AL.

Here, the symbol i = √−1 represents the imaginary unit, Ω ⊂ R2 is a convex bounded domain, and T >

0 is the final time. The complex-valued function u(x, t) represents the single-particle wave function, while
the real-valued function Φ(x, t) denotes the Poisson potential. Both functions satisfy the homogeneous
Dirichlet boundary condition. The nonlinear term |u|2u in the Schrödinger equation is known as the
self-repulsion, whereas the nonlinear term |u|2 in the Poisson equation represents the charge density.
The constant μ = ±1 is a rescaled physical constant, reflecting the nature of the underlying forcing:
repulsive for μ > 0 and attractive for μ < 0. The parameter c denotes a background charge of the
particle independent of time t. V(x) is a specified external potential, and u0(x) is the initial condition.

The SP equation was first introduced by (Ruffini & Bonazzola, 1969) to study self-gravitating boson
stars. Later on, it was explored in various fields of application, including quantum mechanics (Cai et al.,
2010), semiconductors (Markowich et al., 1990; Ringhofer & Soler, 2000), plasma physics (Bertrand
& Van Tuan, 1980; Shukla & Eliasson, 2006, 2011; Sakaguchi & Malomed, 2020), optics (Paredes
et al., 2020). A significant body of literature is dedicated to the mathematical analysis and numerical
approximation of the SP equation, including the well-posedness (Lange et al., 1995; Castella, 1997;
Arriola & Soler, 2001; Masaki, 2011).

In studies of Bose–Einstein condensates, boundary conditions for both u and Φ in (1.1) typically
vanish at infinity and are often scaled to bounded domains as homogeneous Dirichlet boundary
conditions (Cotner, 2016). For simplicity of presentation, we focus on the homogeneous Dirichlet
boundary condition:

u(x, t) = 0 and Φ(x, t) = 0, (x, t) ∈ ∂Ω × [0, T]. (1.2)

However, various types of boundary conditions can be imposed on the SP equation (1.1), includ-
ing (homogeneous) Dirichlet boundary conditions (Arriola & Soler, 2001; Cotner, 2016), zero-flux
(Neumann) boundary conditions (Sakaguchi & Malomed, 2020) and periodic boundary conditions
(Lange et al., 1995; Sakaguchi & Malomed, 2020; Verma et al., 2021). More discussions about boundary
conditions can be found in (Lange et al., 1995; Lange & Zweifel, 1997) and the references therein. The
method to be proposed later and its analysis are applicable to all these boundary conditions. Under the
homogeneous Dirichlet boundary conditions (1.2), the solution of the SP equation (1.1) preserves the
mass conservation

M(t) =
∫

Ω

|u|2 dx = M(0),

and the energy conservation

E(t) =
∫

Ω

(
|∇u|2 + 1

2μ
|∇Φ|2 + V(x)|u|2 + 1

2
|u|4

)
dx = E(0), (1.3)

which are important invariant properties that are also desired at the discrete level. In literature, a modified
energy is often selected as an alternative structure to the original energy, particularly in numerical
methods that involve reformulating the SP equation (1.1) into an equivalent enlarged system (Gong et al.,
2022; Yi & Liu, 2022).

If the self-repulsion term |u|2u in (1.1a) vanishes, several numerical methods have been proposed to
handle the nonlinearity caused by the charge density |u|2 in the Poisson equation, including the Strang
splitting types of methods (Lubich, 2008; Auzinger et al., 2017). To preserve the invariant properties
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RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 3

at the discrete level, Ringhofer et al. introduced a Crank–Nicolson scheme (Ringhofer & Soler, 2000)
and employed the prediction-correction technique to handle the nonlinearity. An extension work of the
Crank–Nicolson-type method was carried out by Ehrhardt et al. to develop an approximation for the
spherically symmetric SP system (Ehrhardt & Zisowsky, 2006). A structure-preserving discontinuous
Galerkin (DG) method proposed in (Yi & Liu, 2022) also treated the nonlinear term implicitly, but
an iterative technique was employed to handle the nonlinear term. More recently, structure-preserving
relaxation Crank–Nicolson types of methods were proposed for the nonlinear Schrödinger equation
(Besse, 2004; Besse et al., 2021) and the SP equation (Athanassoulis et al., 2023). The relaxation methods
introduce an intermediate function to handle the nonlinearity and find solutions of Schrödinger equation
and Poisson equation at different time levels. Therefore, the corresponding schemes are linear.

For the nonlinear SP equation (1.1) that incorporates both the self-repulsion |u|2u and the charge
density |u|2, different techniques may be necessary to handle the two distinct nonlinear terms. In addition,
it is challenging to handle the two nonlinear terms while simultaneously conserving the invariant
properties (Wang et al., 2018). A scalar auxiliary variable (SAV) Crank–Nicolson scheme was proposed
in (Gong et al., 2022) that preserves both mass and modified energy properties. It is interesting to note that
the SAV approach is only applied to the nonlinear term |u|2u while treating the nonlinear term |u|2 simply
implicitly. Therefore, the method remains implicit and nonlinear, requiring iterative methods (IMs)
for convergence. Another noteworthy DG method (Yi & Liu, 2022) applies the relaxation techniques
described in (Besse, 2004) for the Schrödinger equation, but treats the nonlinear term |u|2 in the Poisson
equation implicitly. Therefore, iterative techniques are still needed to solve the coupled system formed
by the Schrödinger equation and the Poisson equation.

It is natural to inquire whether it is possible to handle the nonlinear terms efficiently while conserving
the invariant properties. Motivated by effectiveness and the ability of the structure-preserving relaxation-
type of schemes to preserve the invariants for the Schrödinger equation and the general SP equation
(Besse, 2004; Besse et al., 2021; Athanassoulis et al., 2023), we propose a linear and structure-preserving
relaxation Crank–Nicolson finite element method (FEM) tailored for solving the nonlinear SP equation
(1.1). More specifically, we introduce only one auxiliary variable to reformulate two different nonlinear
terms in two equations simultaneously: the self-repulsion term |u|2u in the Schrödinger equation (1.1a),
and the charge density |u|2 in the Poisson equation (1.1b). This transforms the SP equation (1.1) into an
equivalent system, facilitating its discretization into a linear fully discrete finite element scheme. This
approach conserves both mass and modified energy, while also allowing for a linear implementation
without the need for iterative techniques. To the best of our knowledge, the approach that introduces only
one auxiliary variable to simultaneously reformulate different nonlinear terms in two distinct equations
in a system, as described, has not been explored in the literature for the SP equation (1.1).

Error analysis of the numerical methods for the SP equations is crucial for assessing their stability
and accuracy, but much attention has been given to optimal error analysis for the SP equations without
the self-repulsion term. (Lubich, 2008) pioneered the error analysis of the Strang-type splitting method
in the semi-discretization system. (Auzinger et al., 2017) analyzed the convergence analysis for the
fully discrete scheme for the SP equation by using the splitting FEM. Later on, (Zhang, 2013) studied
the optimal error estimates of the finite difference method under proper regularity assumptions. The
optimal L2 error estimate of semi-discrete conservative DG scheme was also proved in (Yi & Liu, 2022).
However, limited research on error analysis has been established for numerical methods incorporating
the nonlinear self-repulsion term. (Gong et al., 2022) established unconditional energy stability and
performed convergence analysis for the SAV Crank–Nicolson spectral method.

In this work, we rigorously derive optimal a priori error estimates for the relaxation Crank–Nicolson
FEM using the method of induction. Various tools have been introduced and developed to obtain
the desired results, such as the uniform boundedness of the finite element approximations, and the
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4 H. LIU ET AL.

dependence of the errors between different equations. Specially, the L2 error of the solution in the
Poisson equation is bounded by the L2 error of auxiliary variable and an optimal spatial error bound.
As a result, we obtain second order accuracy in time and (k + 1)th order accuracy in space when
employing polynomials of degrees no more than k. To the best of our knowledge, there are currently
no rigorous convergence results in the literature for relaxation Crank–Nicolson types of methods for the
SP equation. The analysis technique developed in this work can be extended to other similar numerical
methods, offering a broader applicability. An extension of the error analysis for the structure-preserving
relaxation Crank–Nicolson FEM to the SP equation, without the self-repulsion term |u|2u in (1.1a), was
also provided.

The contributions, innovations and significance of this work include:

• Different from the existing methods that use various techniques to handle the two distinct nonlinear
terms in the SP equation (1.1), we employ only one technique, namely the relaxation method, for
both nonlinear terms. Consequently, the proposed method is easy to implement.

• Though we use only one technique to handle the two different nonlinear terms, we prove that the
proposed method preserves both mass and modified energy.

• The proposed method is implemented linearly without resorting to any iterative techniques and
sequentially without the need to solve a coupled system. Therefore, it is computationally efficient
and cheap.

• We derived the optimal error estimates for the proposed method, obtaining second-order accuracy
in time and (k + 1)th order accuracy in space for the L2 errors when applying polynomials with a
maximal degree k.

• We conduct numerical examples to verify the performance of the proposed method, including
accuracy tests, conservation verification and comparisons with existing results.

The organization of this paper is as follows. In Section 2, we present the relaxation Crank–Nicolson
FEM for the SP equation, and we demonstrate the structure-preserving properties of both the continuous
problem and the fully discrete scheme. In Section 3, we establish the optimal error estimates in L2 norm
for the solutions of a fully discrete system, comprising second-order accuracy in time and (k+1)th order
accuracy in space. We further extend the convergence results to the relaxation Crank–Nicolson scheme
(Athanassoulis et al., 2023) in Section 4. In Section 5, some numerical experiments are carried out to
validate the theoretical analysis and verify the performance of the proposed conservative method.

We employ Wm,p(Ω ,R) and Wm,p(Ω ,C) to denote real-valued and complex-valued Sobolev spaces,
respectively. For brevity, we use Hm(Ω) for Wm,2(Ω ,R) and Hm(Ω) for Wm,2(Ω ,C), with norms
denoted by ‖ · ‖m and semi-norms by | · |m. When m = 0, ‖ · ‖ represents the L2 norm of either L2(Ω)

or L2(Ω). Unless explicitly stated otherwise, the constants denoted by C, possibly accompanied by a
suitable subscript, represent generic positive constants that are independent of τ , h, n and N, but may
depend on final time T and the regularity of exact solutions u and Φ.

2. The relaxation Crank–Nicolson FEM

In the following presentation, the inner product and norm of the standard complex-valued Hilbert space
L2(Ω) are expressed as 〈·, ·〉 and ‖ · ‖, respectively,

〈u, v〉 :=
∫

Ω

uv∗ dx and ‖u‖ = √〈u, u〉,
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RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 5

where v∗ denotes the complex conjugate of v. Similarly, the inner product and norm of the real-valued
Hilbert space L2(Ω) are defined by

(u, v) :=
∫

Ω

uv dx and ‖u‖ = √
(u, u).

Then the weak formulation of problem (1.1) reads as: find u ∈ C1([0, T], H1
0(Ω)) and Φ ∈ H1

0(Ω),

i
〈
ut, ω

〉 = A0 (u, ω) + 〈Φu, ω〉 + 〈V(x)u, ω〉 +
〈
|u|2u, ω

〉
, ∀ω ∈ H1

0(Ω), (2.1)

A1 (Φ, χ) = μ
(
|u|2 − c, χ

)
, ∀χ ∈ H1

0(Ω), (2.2)

where the bilinear forms A0(·, ·) and A1(·, ·) are defined as follows

A0(ω, v) = 〈∇ω, ∇v〉, ∀ω, v ∈ H1
0(Ω), (2.3)

A1(φ, χ) = (∇φ, ∇χ), ∀φ, χ ∈ H1
0(Ω), (2.4)

and they both satisfy the coercivity and continuity properties, namely, there exist constants γ1 > 0 and
γ2 > 0 such that

Aj(v, v) ≥ γ1‖v‖2
1, Aj(ω, v) ≤ γ2‖ω‖1‖v‖1, j = 0, 1, (2.5)

for any ω, v ∈ H1
0(Ω) or H1

0(Ω).

2.1 Mass and conservation properties

We begin with the review of the continuous mass and energy conservation for the SP equation (1.1).
Then, we propose a FEM that conserves these properties.

The SP equation (1.1) is nonlinear, containing two nonlinear terms: the self-repulsion term |u|2u in
the Schrödinger equation (1.1a), and the charge density |u|2 in the Poisson equation (1.1b). Observing
that two nonlinearities share a common factor, we introduce a real auxiliary variable Ψ = |u|2. The SP
equation (1.1) can then be equivalently written as

⎧⎨
⎩

Ψ = |u|2,
iut = −Δu + Φu + V(x)u + Ψ u,
−ΔΦ = μ(Ψ − c),

(2.6)

whose weak formulation is to find u ∈ C1([0, T], H1
0(Ω)) and Ψ , Φ ∈ H1

0(Ω) such that

(Ψ , v) =
(
|u|2, v

)
, ∀v ∈ H1

0(Ω), (2.7a)

i
〈
ut, ω

〉 = A0 (u, ω) + 〈Φu, ω〉 + 〈V(x)u, ω〉 + 〈Ψ u, ω〉, ∀ω ∈ H1
0(Ω), (2.7b)

A1 (Φ, χ) = μ (Ψ − c, χ), ∀χ ∈ H1
0(Ω). (2.7c)
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6 H. LIU ET AL.

Similar to (1.1), the following invariants are preserved for the new SP system:

mass conservation M(t) =
∫

Ω

|u|2 dx = M(0), (2.8)

energy conservation E(t) =
∫

Ω

(
|∇u|2 + 1

2μ
|∇Φ|2 + V(x)|u|2 + 1

2
Ψ 2

)
dx = E(0). (2.9)

Indeed, by substituting ω = u in (2.7b), we obtain

i
〈
ut, u

〉 = A0(u, u) + 〈Φu, u〉 + 〈V(x)u, u〉 + 〈Ψ u, u〉. (2.10)

Taking the imaginary part of (2.10) yields

1

2

d

dt

∫
Ω

|u|2 dx = 0, (2.11)

which proves the mass conservation (2.8).
On the other hand, by taking ω = ut in (2.7b), it holds

i
〈
ut, ut

〉 = A0(u, ut) + 〈
Φu, ut

〉 + 〈
V(x)u, ut

〉 + 〈
Ψ u, ut

〉
. (2.12)

The real part of (2.12) yields

d

dt

∫
Ω

|∇u| 2 dx +
∫

Ω

Φ
d

dt
|u| 2 dx + d

dt

∫
Ω

V(x) |u| 2 dx +
∫

Ω

Ψ
d

dt
|u|2 dx = 0. (2.13)

By taking v = Φ in (2.7a)t, which is a resulting equation from differentiation of (2.7a) in t, it follows

∫
Ω

Φ
d

dt
|u| 2 dx =

∫
Ω

Φ
d

dt
(Ψ − c) dx. (2.14)

Similarly, by taking χ = Φ in (2.7c)t, the second term in (2.13) can be rewritten as

∫
Ω

Φ
d

dt
|u| 2 dx = 1

μ

∫
Ω

∇Φt · ∇Φ dx. (2.15)

Setting v = Ψ in (2.7a)t, the last term in (2.13) can be rewritten as

1

2

d

dt

∫
Ω

Ψ 2 dx =
∫

Ω

Ψ
d

dt
|u|2 dx. (2.16)

Therefore, (2.13) reduces to

d

dt

(∫
Ω

|∇u| 2 dx + 1

2μ

∫
Ω

|∇Φ| 2 dx +
∫

Ω

V(x) |u| 2 dx + 1

2

∫
Ω

Ψ 2 dx

)
= 0. (2.17)

Hence, the energy conservation (2.9) holds.
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RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 7

2.2 Fully discrete scheme

To preserve the properties mentioned above at the discrete level, we investigate a relaxation Crank–
Nicolson FEM in this subsection.

Let Th be a shape-regular and quasi-uniform triangulation of Ω ⊂ R2, K ∈ Th be an element, and
h := maxK∈Th

hK be the mesh size with hK being the diameter of K. We denote the real-valued finite
element space Vh by

Vh =
{

v ∈ C(Ω) : v ∈ Pk(K), ∀K ∈ Th

}
, (2.18)

where Pk is the space of real-valued polynomials of degree up to the k (k ≥ 1). Similarly, the complex-
valued finite element space Vc

h , associated with the triangulation Th, is denoted by

Vc
h =

{
v ∈ C(Ω) : v ∈ Qk(K), ∀K ∈ Th

}
, (2.19)

where Qk denotes the space of complex-valued polynomials of degree up to k (k ≥ 1) in space.
Denote by {tn | tn = nτ , 0 ≤ n ≤ N} a uniform partition of time interval [0, T] with time step size

τ = T/N, where N is a positive integer. We also introduce tn−1/2 = (tn + tn−1)/2 = (n − 1
2 )τ . For

any function ϕ(x, t) and n ≥ 0, we denote ϕn−θ
h ∈ Vh or Vc

h as an approximation of ϕ(x, tn−θ ), where
θ = 0, 1

2 .
For a sequence of functions {ϕn}N

n=0, we define the operators

Dτ ϕ
n+1 := ϕn+1 − ϕn

τ
, ϕn+1/2 := ϕn+1 + ϕn

2
. (2.20)

The relaxation Crank–Nicolson method introduces an intermediate function, and solves the intermediate
function and the solution of the Schrödinger equation at different time levels. Therefore, the correspond-
ing scheme can be implemented linearly. For the linearity of the scheme when coupled with the Poisson
equation, we further solve the Poisson equation in the same time level as the intermediate function.
More specifically, for given (Ψ

n−1/2
h , un

h, Φn−1/2
h ) ∈ Vh × Vc

h × Vh, the relaxation Crank–Nicolson finite

element scheme, derived from (2.6) or its weak formualation (2.7), is to find (Ψ
n+1/2
h , un+1

h , Φn+1/2
h ) ∈

Vh × Vc
h × Vh such that

(Ψ
n+1/2
h + Ψ

n−1/2
h , vh) = (2|un

h|2, vh), ∀vh ∈ Vh, (2.21a)

i〈Dτ un+1
h , ωh〉 = A0(u

n+1/2
h , ωh) + 〈(Φn+1/2

h + V(x) + Ψ
n+1/2
h )un+1/2

h , ωh〉, ∀ωh ∈ Vc
h , (2.21b)

A1(Φ
n+1/2
h , χh) = μ(Ψ

n+1/2
h − c, χh), ∀χh ∈ Vh, (2.21c)

where the initial data u0
h = Πhu0 and Ψ

−1/2
h = Πh|u0

h|2. Here, Πh : H1(Ω) → Vh is the nodal

interpolation operator. To compute the initial energy, we need Φ
−1/2
h ∈ Vh, which is obtained by

A1(Φ
−1/2
h , χh) = μ(Ψ

−1/2
h − c, χh), ∀χh ∈ Vh.
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8 H. LIU ET AL.

LEMMA 2.1. Given (Ψ
n−1/2
h , un

h, Φn−1/2
h ) ∈ Vh × Vc

h × Vh and τ > 0, the relaxation Crank–Nicolson

finite element scheme (2.21) admits a unique solution (Ψ
n+1/2
h , un+1

h , Φn+1/2
h ) ∈ Vh × Vc

h × Vh.

Proof. The scheme (2.21) is a finite dimensional system, whose existence is equivalent to its uniqueness,
thus we only need to show its uniqueness. Assume that (2.21) has two possible solutions and their
difference is denoted by (δΨ

n+1/2
h , δun+1

h , δΦn+1/2
h ), then it satisfies

(δΨ
n+1/2
h , vh) = 0, ∀vh ∈ Vh, (2.22a)

i〈δun+1
h /τ , ωh〉 = 1

2
A0(δun+1

h , ωh) + 1

2

〈(
Φ

n+1/2
h + V(x) + Ψ

n+1/2
h

)
δun+1

h , ωh

〉
, ∀ωh ∈ Vc

h ,

(2.22b)

A1(δΦ
n+1/2
h , χh) = μ(δΨ

n+1/2
h , χh), ∀χh ∈ Vh. (2.22c)

Taking vh = δΨ
n+1/2
h in (2.22a) gives ‖δΨ n+1/2

h ‖ = 0, namely δΨ
n+1/2
h = 0. Then (2.22c) gives

A1(δΦ
n+1/2
h , χh) = 0, ∀χh ∈ Vh. (2.23)

By taking χh = δΦ
n+1/2
h in (2.23) and applying (2.5), it follows

‖δΦn+1/2
h ‖1 ≤ 0,

which implies δΦ
n+1/2
h = 0. Finally, taking ωh = τδun+1

h in (2.22b) yields

i‖δun+1
h ‖2 = τ

2
A0(δun+1

h , δun+1
h ) + τ

2

〈(
Φ

n+1/2
h + V(x) + Ψ

n+1/2
h

)
δun+1

h , δun+1
h

〉
,

and the imaginary part gives ‖δun+1
h ‖ = 0, or equivalently, δun+1

h = 0. Thus, the conclusion holds. �
By solving the intermediate function, the Poisson equation, and the solutions of the Schrödinger

equation at different time levels, namely the intermediate function and the Poisson solution at tn+1/2, and
the Schrödinger at tn+1, the relaxation Crank–Nicolson FEM (2.21) can be implemented in the following
algorithm.
Algorithm 2.1 The relaxation Crank–Nicolson FEM (2.21) is solved sequentially and linearly as follows.

• Solve Ψ
n+1/2
h ∈ Vh from (2.21a).

• Solve Φ
n+1/2
h ∈ Vh from (2.21c).

• Solve un+1
h ∈ Vc

h from (2.21b).

REMARK 2.1. The proposed relaxation Crank–Nicolson FEM (2.21) is linear without resorting to any
interaction techniques, Algorithm 2.1 additionally implies that it does not require solving a couple
system.
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RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 9

2.3 Structure-preserving properties

From the literature, to conserve the invariant properties is challenging to solve the SP equation (1.1).
Next, we explore the conservation properties of the proposed relaxation Crank–Nicolson finite element
scheme (2.21) and obtain the following statement.

LEMMA 2.2. For any τ > 0, the relaxation Crank–Nicolson FEM (2.21) satisfies the discrete conservation
for both mass and modified energy with 0 ≤ n ≤ N − 1, respectively

Mn+1
h = M0

h , (2.24)

En+1
h = E0

h, (2.25)

where the mass Mn+1
h := ∫

Ω
|un+1

h |2 dx, and the modified energy

En+1
h := A0(u

n+1
h , un+1

h ) + 1

2μ
A1(Φ

n+3/2
h , Φn+1/2

h ) +
∫

Ω

V(x)|un+1
h |2 dx + 1

2

∫
Ω

Ψ
n+3/2
h Ψ

n+1/2
h dx.

Proof. Taking ωh = un+1/2
h in (2.21b) yields

i〈Dτ un+1
h , un+1/2

h 〉 = A0(u
n+1/2
h , un+1/2

h ) + 〈(Φn+1/2
h + V(x) + Ψ

n+1/2
h )un+1/2

h , un+1/2
h 〉. (2.26)

Then the imaginary part of (2.26) gives

‖un+1
h ‖2 − ‖un

h‖2 = 0, (2.27)

which implies the conservation of the mass (2.24).
Next, taking ωh = Dτ un+1

h in (2.21b) gives

i〈Dτ un+1
h , Dτ un+1

h 〉 = A0(u
n+1/2
h , Dτ un+1

h ) + 〈(Φn+1/2
h + V(x) + Ψ

n+1/2
h )un+1/2

h , Dτ un+1
h 〉. (2.28)

The real part of (2.28) implies

[
A0(u

n+1
h , un+1

h ) − A0(u
n
h, un

h)
]

+
∫

Ω

(Φ
n+1/2
h + V(x) + Ψ

n+1/2
h )(|un+1

h |2 − |un
h|2) dx = 0. (2.29)
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Then we proceed to estimate the terms in (2.29). Upon calculation,

∫
Ω

Φ
n+1/2
h

(
|un+1

h |2 − |un
h|2

)
dx

=
∫

Ω

Φ
n+1/2
h

(
Ψ

n+3/2
h + Ψ

n+1/2
h

2
− Ψ

n+1/2
h + Ψ

n−1/2
h

2

)
dx by (2.21a)

= 1

2

∫
Ω

Φ
n+1/2
h (Ψ

n+3/2
h − c) − Φ

n+1/2
h (Ψ

n−1/2
h − c) dx

= 1

2μ
A1

(
Φ

n+3/2
h , Φn+1/2

h

)
− 1

2μ
A1

(
Φ

n+1/2
h , Φn−1/2

h

)
by (2.21c). (2.30)

Similarly, by (2.21a), it holds

∫
Ω

Ψ
n+1/2
h

(
|un+1

h |2 − |un
h|2

)
dx = 1

2

∫
Ω

(
Ψ

n+3/2
h Ψ

n+1/2
h − Ψ

n+1/2
h Ψ

n−1/2
h

)
dx. (2.31)

Plugging (2.30) and (2.31) into (2.29) and regrouping give the discrete energy conservation (2.25). �

REMARK 2.2. Handling the two nonlinear terms in the SP equation (1.1) while conserving the original
energy at the discrete level remains a challenging task. The discrete energy has only been numerically
verified for the splitting Chebyshev collocation method proposed in (Wang et al., 2018), whereas the
IMs in (Gong et al., 2022; Yi & Liu, 2022) conserve modified rather than original energies. Although
our proposed method also conserves a modified energy, it achieves this with much higher efficiency.

3. Error estimates for the fully discrete system

The main objective of this section is to establish the optimal error estimates of the relaxation Crank–
Nicolson FEM (2.21) for the SP equation (1.1). To begin with, we review some useful results.

Recall that Πh : H1(Ω) → Vh be the nodal interpolation operator. By the classical finite element
approximation theory (Brenner & Scott, 2008), it follows

∥∥v − Πhv
∥∥ + h

∥∥∇ (
v − Πhv

)∥∥ + h‖v − Πhv‖∞ ≤ Chk+1‖v‖k+1, ∀v ∈ Hk+1(Ω). (3.1)

We also define the Ritz projection operator Rh : H1
0(Ω) → Vh, which satisfies

(∇(v − Rhv), ∇ω
) = 0, ∀ω ∈ Vh, (3.2)

and holds the projection error estimate∥∥v − Rhv
∥∥ + h

∥∥∇ (
v − Rhv

)∥∥ ≤ Chk+1‖v‖k+1, ∀v ∈ H1
0(Ω) ∩ Hk+1(Ω). (3.3)

The following inverse inequality (Ciarlet & Oden, 1978) will be widely used in the analysis,

‖v‖∞ ≤ Ch−1‖v‖, ∀v ∈ Vh. (3.4)

In addition, we also need the following result.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf117/8413501 by The U
niversity of Texas at El Paso user on 05 January 2026



RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 11

LEMMA 3.1. For the Ritz projection defined in (3.2), it holds for any k ≥ 1,

‖Rhv‖∞ ≤ C, ∀v ∈ H1
0(Ω) ∩ Hk+1(Ω), (3.5)

where C depends on ‖v‖k+1 and ‖v‖∞, independent of h.

Proof. By the embedding theorem, it follows H2(Ω) ⊂ L∞(Ω). Then v ∈ Hk+1(Ω) implies v ∈
L∞(Ω). Let Πhv be the nodal interpolation of v. By (3.1), (3.3), and the triangle inequality,

‖v − Rhv‖∞ ≤‖v − Πhv‖∞ + ‖Πhv − Rhv‖∞ ≤ ‖v − Πhv‖∞ + Ch−1‖Πhv − Rhv‖
≤‖v − Πhv‖∞ + Ch−1 (‖v − Πhv‖ + ‖v − Rhv‖) ≤ Chk‖v‖k+1.

Therefore, applying the triangle inequality gives

‖Rhv‖∞ ≤ ‖v − Rhv‖∞ + ‖v‖∞ ≤ C.

�

REMARK 3.1. Specially, the result in Lemma 3.1 holds for any v ∈ H1
0(Ω) ∩ Hs+1(Ω) with s > 0.

The projection errors (3.1), (3.3), (3.4), and the bound (3.5) also hold for functions in complex-valued
Sobolev space and the corresponding projections in complex-valued finite element space Vc

h .

LEMMA 3.2 (Discrete Gronwall’s inequality (Heywood & Rannacher, 1990)). Let τ , B and ak, bk, ck,
γk, for k ≥ 0, be non-negative numbers satisfying

an + τ

n∑
k=0

bk ≤ τ

n∑
k=0

γkak + τ

n∑
k=0

ck + B, for n ≥ 0. (3.6)

Suppose that τγk < 1, for all k and σk = (1 − τγk)
−1. Then

an + τ

n∑
k=0

bk ≤ exp

(
τ

n∑
k=0

σkγk

) (
τ

n∑
k=0

ck + B

)
. (3.7)

LEMMA 3.3. (Zouraris, 2023) Let va, vb, za, zb ∈ C and S
(
va, vb, za, zb

)
:= |va|2 − |vb|2 − |za|2 + |zb|2.

Then,

∥∥∥S
(

va, vb, za, zb
)∥∥∥ ≤ 2

∥∥∥za − zb
∥∥∥∞

∥∥∥vb − zb
∥∥∥ + H

(
va, vb, za, zb

) ∥∥∥va − vb − za + zb
∥∥∥ , (3.8)

where H
(
va, vb, za, zb

)
:= ‖va‖∞ + ∥∥vb

∥∥∞ + ∥∥za − zb
∥∥∞.

For the finite element approximation related to the Poisson problem, the following estimate holds.
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12 H. LIU ET AL.

LEMMA 3.4. Given f ∈ L2(Ω). If a ∈ H1
0(Ω) satisfies

A1(a, χh) = (f , χh), ∀χh ∈ Vh. (3.9)

Then there exists a constant C > 0 such that

‖a‖ ≤ C

(
‖f ‖ + h min

ah∈Vh
‖ah − a‖1

)
. (3.10)

Proof. Let ah ∈ Vh be an approximation of a. Then (3.9) can be reformulated as

A1(ah, χh) = A1(ah − a, χh) + (f , χh). (3.11)

Taking χh = ah in (3.11) and applying (2.5) give

‖ah‖2
1 ≤ γ2

γ1
‖ah − a‖1‖ah‖1 + 1

γ1
‖f ‖‖ah‖. (3.12)

Note that ‖ah‖ ≤ C‖ah‖1. We obtain

‖ah‖1 ≤ C
(‖ah − a‖1 + ‖f ‖). (3.13)

By using the triangle inequality ‖a‖1 − ‖a − ah‖1 ≤ ‖ah‖1, (3.13) yields

‖a‖1 ≤ C

(
min

ah∈Vh
‖ah − a‖1 + ‖f ‖

)
. (3.14)

On the other hand, we introduce a function ψ solving the elliptic problem

− Δψ = a in Ω , ψ = 0 on ∂Ω , (3.15)

which holds the regularity estimate ψ ∈ H2(Ω) and

‖ψ‖2 ≤ ‖a‖. (3.16)

From (3.15), it follows

‖a‖2 =
∫

Ω

a · (−Δψ) dx =
∫

Ω

(∇a · ∇ψ) dx = A1(a, ψ). (3.17)
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RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 13

Let ψI ∈ Vh be a piecewise linear interpolant of ψ . Then

‖a‖2 = A1(a, ψ) = A1(a, ψI) + A1(a, ψ − ψI)

= (f , ψI) + A1(a, ψ − ψI)

≤ ‖f ‖(‖ψ‖ + ‖ψ − ψI‖) + γ2‖a‖1‖ψ − ψI‖1

≤ ‖f ‖(‖ψ‖ + Ch2‖ψ‖2) + Ch‖a‖1‖ψ‖2

≤ C(‖f ‖ + h‖a‖1)‖a‖, (3.18)

where we have used the regularity (3.16) and the projection errors

‖ψ − ψI‖ ≤ Ch2‖ψ‖2, ‖(ψ − ψI)‖1 ≤ Ch‖ψ‖2.

(3.18) together with (3.14) yields the estimate (3.10). �
We define the discrete Laplacian operator Δh : H1

0(Ω) → Vc
h as

〈−Δhv, χh〉 = 〈∇v, ∇χh〉, ∀χh ∈ Vc
h . (3.19)

We also introduce linear operators Sh, Th : Vc
h → Vc

h ,

〈
Shvh, ωh

〉 =
〈(

Ih − i
τ

2
Δh

)
vh, ωh

〉
, ∀ωh ∈ Vc

h , (3.20)

〈
Thvh, ωh

〉 =
〈(

Ih + i
τ

2
Δh

)
vh, ωh

〉
, ∀ωh ∈ Vc

h , (3.21)

where Ih is an identity operator on Vc
h . Denoting by Oh = Sh, Th and setting ωh = vh in (3.20) and (3.21)

give

Re(Ohvh, vh) = ‖vh‖2, ∀vh ∈ Vc
h , (3.22)

which implies ker(Oh) = {0}. Therefore, the operators Sh and Th are invertible.
Similar to (Zouraris, 2023, Lemma 2.4), the following statement holds.

LEMMA 3.5. The operators Sh defined in (3.20) and Th in (3.21) are invertible and fulfil

‖S−1
h (vh)‖ ≤ ‖vh‖, ∀vh ∈ Vc

h , (3.23)

‖Bh(vh)‖ ≤ ‖vh‖, ∀vh ∈ Vc
h , (3.24)

where the linear operator Bh : Vc
h → Vc

h is given by

Bh := S−1
h Th. (3.25)
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14 H. LIU ET AL.

LEMMA 3.6. Let Ih, Sh and Bh be the operators in (3.20), (3.21) and (3.25), and let {yn}N
n=1 be a sequence

in Vc
h satisfying:

yn+1 = (Bh − Ih)y
n + Bhyn−1 + S−1

h Γ n+1, (3.26)

where {Γ n+1}N
n=1 are given functions in Vc

h . Then, for n ≥ 2 it follows

‖yn+1‖ + ‖yn‖ ≤ 2
∥∥∥Sh(y

2)

∥∥∥ + 2
∥∥∥Sh(y

1)

∥∥∥ + 2
n∑

l=2

‖Γ l+1‖. (3.27)

Proof. The proof is summarised from Part 9 in the proof of Theorem 3.1 in (Zouraris, 2023), we present
it here for completeness. If n = 1 in (3.27), the estimate is obvious by using Lemma 3.5 and yi = S−1

h Shyi

for i = 1, 2. Next, we will focus on n ≥ 2. Note that (3.26) can be written in a vector form

[
yn+1

yn

]
= M

[
yn

yn−1

]
+

[
Fn+1

0

]
, (3.28)

where

M =
[

Bh − Ih Bh
Ih 0

]
and Fn+1 := S−1

h Γ n+1. (3.29)

A simple induction argument yields

[
yn+1

yn

]
= Mn−1

[
y2

y1

]
+

n∑
l=2

Mn−l
[

Fl+1

0

]
, (3.30)

where

Mκ = 1

2

[
((−1)κIh + Bκ+1

h )Sh ((−1)κ+1Bh + Bκ+1
h )Sh

((−1)κ+1Ih + Bκ
h)Sh ((−1)κBh + Bκ

h)Sh

]
. (3.31)

Plugging (3.31) into (3.30) yields

[
yn+1

yn

]
= 1

2

[
((−1)n−1Ih + Bn

h)Sh ((−1)nBh + Bn
h)Sh

((−1)nIh + Bn−1
h )Sh ((−1)n−1Bh + Bn−1

h )Sh

] [
y2

y1

]

+ 1

2

n∑
l=2

[
((−1)n−lIh + Bn−l+1

h )Sh ((−1)n−l+1Bh + Bn−l+1
h )Sh

((−1)n−l+1Ih + Bn−l
h )Sh ((−1)n−lBh + Bn−l

h )Sh

] [
Fl+1

0

]
, (3.32)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf117/8413501 by The U
niversity of Texas at El Paso user on 05 January 2026



RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 15

which gives for i = n, n + 1,

yi = 1

2

[
(−1)iIh + Bi−1

h

]
Shy2 + 1

2

[
(−1)i−1Bh + Bi−1

h

]
Shy1 + 1

2

n∑
l=2

[
(−1)i−l+1Ih + Bi−l

h

]
Γ l+1,

(3.33)

which together with Lemma 3.5 yields (3.27). �
For error analysis purposes, we assume that the exact solutions u, Φ and Ψ in (2.6) hold the following

regularity

u, ut ∈ L∞(0, T; Hk+1(Ω)), Ψ , Ψt, Φ, Φt ∈ L∞(0, T; Hk+1(Ω)),

utt, Ψtt ∈ L∞(0, T; H2(Ω)), Ψttt ∈ L∞(0, T; L2(Ω)), uttt, utttt ∈ L∞(0, T; L2(Ω)).
(3.34)

In addition, we also assume that the external potential V(x) ∈ L∞(Ω).
In view of the regularity assumptions in (3.34) for the exact solution u, Ψ and Φ, and Lemma 3.1,

we have for any n ≥ 0,

‖un‖∞ ≤ Cu, ‖Ψ n−1/2‖∞ ≤ CΨ , ‖Φn−1/2‖∞ ≤ CΦ ,

‖Rhun‖∞ ≤ Du, ‖RhΨ
n−1/2‖∞ ≤ DΨ , ‖RhΦ

n−1/2‖∞ ≤ DΦ ,
(3.35)

where the constants

Cu = sup
0≤n≤N

‖un‖∞, CΨ = sup
0≤n≤N

‖Ψ n−1/2‖∞, CΦ = sup
0≤n≤N

‖Φn−1/2‖∞,

Du = sup
0≤n≤N

‖Rhun‖∞, DΨ = sup
0≤n≤N

‖RhΨ
n−1/2‖∞, DΦ = sup

0≤n≤N
‖RhΦ

n−1/2‖∞.

Recall that the exact solution of (2.6) satisfies

(
Ψ n+1/2 + Ψ n−1/2, v

)
= (

Sn
1, v

) +
(

2|un|2, v
)

, (3.36a)

i
〈
Dτ un+1, ω

〉
= A0

(
un+1/2, ω

)
+

〈(
Φn+1/2 + V(x) + Ψ n+1/2

)
un+1/2, ω

〉
+ 〈Rn+1

1 , ω〉, (3.36b)

A1

(
Φn+1/2, χ

)
= μ

(
Ψ n+1/2 − c, χ

)
, (3.36c)

for any v, χ ∈ H1
0(Ω) and ω ∈ H1

0(Ω), where the consistency errors

Sn
1 = Ψ n+1/2 + Ψ n−1/2 − 2Ψ n,
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and

Rn+1
1 = − i(un+1/2

t − Dτ un+1) + Δ(un+1/2 − un+1/2)

+ (Φn+1/2 + V(x) + Ψ n+1/2)(un+1/2 − un+1/2). (3.37)

We define the errors en+1
u , en+1/2

Ψ and en+1/2
Φ with 0 ≤ n ≤ N − 1 as

en+1
u = un+1 − un+1

h , en+1/2
Ψ = Ψ n+1/2 − Ψ

n+1/2
h , en+1/2

Φ = Φn+1/2 − Φ
n+1/2
h .

Taking v = vh, ω = ωh and χ = χh in (3.36), and subtracting (2.21) from (3.36) yield

(en+1/2
Ψ + en−1/2

Ψ , vh) = (Sn
1, vh) + (Tn

1 , vh), (3.38a)

i〈Dτ en+1
u , ωh〉 = A0(e

n+1/2
u , ωh) + 〈Gn+1

1 , ωh〉 + 〈Rn+1
1 , ωh〉, (3.38b)

A1(e
n+1/2
Φ , χh) = μ(en+1/2

Ψ , χh), (3.38c)

where

Tn
1 = 2|un|2 − 2|un

h|2,

and

Gn+1
1 = (Φn+1/2un+1/2 − Φ

n+1/2
h un+1/2

h ) + V(x)(un+1/2 − un+1/2
h )

+ (Ψ n+1/2un+1/2 − Ψ
n+1/2
h un+1/2

h ). (3.39)

By using the projection operator Rh, the errors en+1
u , en+1/2

Ψ and en+1/2
Φ can be split as

en+1
u = (un+1 − Rhun+1) + (Rhun+1 − un+1

h ) = ξn+1
u + ηn+1

u , (3.40)

en+1/2
Ψ = (Ψ n+1/2 − RhΨ

n+1/2) + (RhΨ
n+1/2 − Ψ

n+1/2
h ) = ξ

n+1/2
Ψ + η

n+1/2
Ψ , (3.41)

en+1/2
Φ = (Φn+1/2 − RhΦ

n+1/2) + (RhΦ
n+1/2 − Φ

n+1/2
h ) = ξ

n+1/2
Φ + η

n+1/2
Φ . (3.42)

Thus, the equivalent form of the error equations (3.38) are presented as

(η
n+1/2
Ψ + η

n−1/2
Ψ , vh) = (Sn

2, vh) + (Tn
1 , vh), (3.43a)

i〈Dτ η
n+1
u , ωh〉 = A0(η

n+1/2
u , ωh) + 〈Gn+1

1 , ωh〉 + 〈Rn+1
2 , ωh〉, (3.43b)

A1(η
n+1/2
Φ , χh) = μ(η

n+1/2
Ψ , χh) + μ(Rn+1/2

3 , χh), (3.43c)
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RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 17

where

Sn
2 := Sn

1 − (ξ
n+1/2
Ψ + ξ

n−1/2
Ψ ), Rn+1

2 := Rn+1
1 − iDτ ξ

n+1
u , Rn+1/2

3 := ξ
n+1/2
Ψ ,

and we have used (3.2) to get rid of the terms A0(ξ
n+1/2
u , ωh) and A1(ξ

n+1/2
Φ , χh). By using the projection

error (3.3) and the mean value theorem, it holds

‖Dτ ξ
n+1
u ‖ =

∥∥∥Dτ un+1 − RhDτ un+1
∥∥∥ ≤ Chk+1

∥∥∥Dτ un+1
∥∥∥

k+1
≤ Chk+1

∥∥ut(x, t∗)
∥∥

k+1 , (3.44)

where t∗ ∈ (tn, tn+1). Then applying the Taylor expansion and the properties of the interpolation operator,
for any n ≥ 0, gives the estimates

‖Sn
2‖ ≤ C(τ 2 + hk+1), (3.45)

‖Rn+1
2 ‖ ≤ C(τ 2 + hk+1), (3.46)

‖Rn+1/2
3 ‖ ≤ Chk+1. (3.47)

Then we obtain the following error estimates.

THEOREM Suppose that u, Ψ and Φ satisfy the regularity conditions (3.34). If τ ≤ Ch, then there exists
constant τ0 > 0 and h0 > 0 such that when time step τ < τ0 and mesh size h < h0, the solution of the
relaxation Crank–Nicolson finite element scheme (2.21) satisfies

max
0≤n≤N

∥∥en
u

∥∥ ≤ C
(
τ 2 + hk+1

)
, (3.48)

max
0≤n≤N−1

∥∥∥en+1/2
Ψ

∥∥∥ ≤ C
(
τ 2 + hk+1

)
, (3.49)

max
0≤n≤N−1

∥∥∥en+1/2
Φ

∥∥∥ ≤ C(τ 2 + hk+1). (3.50)

Proof. We prove the results using the method of mathematical induction.
Step 1. In this step, we prove the following estimates.

‖e1/2
Ψ ‖ ≤ C(τ 2 + hk+1), (3.51)

‖e1/2
Φ ‖ ≤ C(τ 2 + hk+1), (3.52)

‖e1
u‖ ≤ C

(
τ 2 + hk+1

)
, (3.53)
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‖Dτ η
1
u‖ ≤ C

(
τ 2 + hk+1

)
. (3.54)

For n = 0, taking vh = η
1/2
Ψ − η

−1/2
Ψ in (3.43a) gives

‖η1/2
Ψ ‖2 − ‖η−1/2

Ψ ‖2 =
(

S0
2, η1/2

Ψ − η
−1/2
Ψ

)
+

(
T0

1 , η1/2
Ψ − η

−1/2
Ψ

)

≤ 2‖S0
2‖2 + 1

2
‖η1/2

Ψ ‖2 + 1

2
‖η−1/2

Ψ ‖2 + 2‖T0
1‖2. (3.55)

Note that the following inequalities hold

‖T0
1‖ ≤ 2‖|u0|2 − |u0

h|2‖ ≤ 2‖u0 + u0
h‖∞‖u0 − u0

h‖ ≤ Chk+1,

‖η−1/2
Ψ ‖ ≤ ‖e−1/2

Ψ ‖ + ‖ξ−1/2
Ψ ‖ ≤ Chk+1,

(3.56)

which together with (3.45) when plugging into (3.55) yields

‖η1/2
Ψ ‖2 ≤ 3‖η−1/2

Ψ ‖2 + 4‖S0
2‖2 + 4‖T0

1‖2 ≤ C(τ 2 + hk+1)2. (3.57)

By (3.57) and the projection error (3.3) for ‖ξ1/2
Ψ ‖,

‖e1/2
Ψ ‖ ≤ ‖η1/2

Ψ ‖ + ‖ξ1/2
Ψ ‖ ≤ C(τ 2 + hk+1). (3.58)

By applying the Lemma 3.4 to the (3.38c) with n = 0, we conclude the following error estimate

‖e1/2
Φ ‖ ≤ C‖e1/2

Ψ ‖ + Chk+1 ≤ C(τ 2 + hk+1). (3.59)

In view of τ ≤ Ch, (3.35), (3.57), (3.59), and the inverse inequality (3.4), there exist h1 > 0 such that
when h < h1,

‖Ψ 1/2
h ‖∞ ≤‖RhΨ

1/2‖∞ + ‖η1/2
Ψ ‖∞ ≤ ‖RhΨ

1/2‖∞ + Ch−1‖η1/2
Ψ ‖ ≤ DΨ + CΨ h ≤ DΨ + 1, (3.60)

‖Φ1/2
h ‖∞ ≤‖RhΦ

1/2‖∞ + Ch−1‖η1/2
Φ ‖ ≤ DΦ + CΨ h ≤ DΦ + 1. (3.61)

Taking ωh = η
1/2
u in (3.43b) with n = 0 gives

i
〈
Dτ η

1
u, η1/2

u

〉
= A0

(
η1/2

u , η1/2
u

)
+

〈
G1

1, η1/2
u

〉
+

〈
R1

2, η1/2
u

〉
,
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where the imaginary part yields

1

2τ

(
‖η1

u‖2 − ‖η0
u‖2

)
= Im

〈
G1

1 + R1
2, η1/2

u

〉
≤

∥∥∥G1
1 + R1

2

∥∥∥ ∥∥∥η1/2
u

∥∥∥
≤ 1

2

∥∥∥G1
1 + R1

2

∥∥∥2 + 1

2

∥∥∥η1/2
u

∥∥∥2

= 1

2

(∥∥∥G1
1

∥∥∥2 +
∥∥∥R1

2

∥∥∥2 + 2
∥∥∥G1

1

∥∥∥ ∥∥∥R1
2

∥∥∥)
+ 1

8

∥∥∥η1
u + η0

u

∥∥∥2

≤
∥∥∥G1

1

∥∥∥2 +
∥∥∥R1

2

∥∥∥2 + 1

4

(
‖η1

u‖2 + ‖η0
u‖2

)
. (3.62)

By employing (3.35), (3.58)–(3.61),

∥∥∥G1
1

∥∥∥ ≤ ‖u1/2‖∞
(
‖e1/2

Φ ‖ + ‖e1/2
Ψ ‖

)
+

(
‖Φ1/2

h ‖∞ + ‖V(x)‖∞ + ‖Ψ 1/2
h ‖∞

)
‖e1/2

u ‖

≤ C
(
‖η1

u‖ + ‖η0
u‖

)
+ C

(
τ 2 + hk+1

)
. (3.63)

Plugging (3.46) and (3.63) into (3.62) gives

1

2τ

(
‖η1

u‖2 − ‖η0
u‖2

)
≤ C1

(
‖η1

u‖2 + ‖η0
u‖2

)
+ C(τ 2 + hk+1)2. (3.64)

Since the initial value η0
u = 0, (3.64) leads to

∥∥∥η1
u

∥∥∥ ≤ Cτ(τ 2 + hk+1), (3.65)

as long as τ < τ1 := 1/(2C1). Since 0 < τ < 1, we then conclude that

∥∥∥e1
u

∥∥∥ ≤ ‖ξ1
u ‖ + ‖η1

u‖ ≤ C(τ 2 + hk+1).

Again, using η0
u = 0 and (3.65) gives

‖Dτ η
1
u‖ = 1

τ

∥∥∥η1
u

∥∥∥ ≤ C(τ 2 + hk+1). (3.66)

Based on (3.4), (3.35) and (3.65), there exists h2 such that when h < h2,

‖u1
h‖∞ ≤ ‖Rhu1‖∞ + ‖Rhu1 − u1

h‖∞ ≤ ‖Rhu1‖∞ + Ch−1‖η1
u‖ ≤ Du + Cuh ≤ Du + 1. (3.67)
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Step 2. In this step, we prove the following estimates

∥∥∥e2
u

∥∥∥ ≤ C
(
τ 2 + hk+1

)
, (3.68)

∥∥∥Dτ η
2
u

∥∥∥ ≤ C
(
τ 2 + hk+1

)
, (3.69)

max
1≤n≤2

∥∥∥en+1/2
Ψ

∥∥∥ ≤ C
(
τ 2 + hk+1

)
, (3.70)

max
1≤n≤2

∥∥∥en+1/2
Φ

∥∥∥ ≤ C(τ 2 + hk+1). (3.71)

Taking the difference between t1 and t0 of (3.43a) with n = 1 leads to

(
η

3/2
Ψ − η

−1/2
Ψ , vh

)
=

(
S1

2 − S0
2, vh

)
+

(
T1

1 − T0
1 , vh

)
. (3.72)

By Lemma 3.3 and (3.67), it follows that

‖T1
1 − T0

1‖ = 2
∥∥∥|u1|2 − |u1

h|2 − |u0|2 + |u0
h|2

∥∥∥
≤ 2‖u1 − u0‖∞‖u1 − u1

h‖
+

(
‖u1

h‖∞ + ‖u0
h‖∞ + ‖u1 − u0‖∞

) ∥∥∥u0
h − u1

h − u0 + u1
∥∥∥

≤ C‖u1 − u0‖∞‖e1
u‖ + C‖e1

u − e0
u‖ + C‖u1 − u0‖∞‖e1

u − e0
u‖

≤ C‖e1
u − e0

u‖ + C‖u1 − u0‖∞
(
‖e1

u − e0
u‖ + ‖e1

u‖
)

≤ C‖e1
u − e0

u‖ + Cτ‖e1
u − e0

u‖ + Cτ‖e1
u‖ ≤ C‖e1

u − e0
u‖ + Cτ‖e1

u‖
≤ Cτ‖Dτ η

1
u‖ + Cτ‖η1

u‖ + Cτhk+1. (3.73)

Note that

‖S1
2 − S0

2‖ =
∥∥∥(

S1
1 − (ξ

3/2
Ψ + ξ

1/2
Ψ )

)
−

(
S0

1 − (ξ
1/2
Ψ + ξ

−1/2
Ψ )

)∥∥∥
≤

∥∥∥S1
1 − S0

1

∥∥∥ +
∥∥∥ξ

3/2
Ψ − ξ

−1/2
Ψ

∥∥∥ . (3.74)

By using the Taylor expression at t1 and the regularity assumption (3.34),

∥∥∥S1
1 − S0

1

∥∥∥ =
∥∥∥Ψ 3/2 − 2Ψ 1 + 2Ψ 0 − Ψ −1/2

∥∥∥ ≤
∥∥∥∥1

2

∫ t3/2

t1
(t3/2 − t)2Ψttt(x, t) dt

+
∫ t0

t1
(t0 − t)2Ψttt(x, t) dt − 1

2

∫ t−1/2

t1
(t−1/2 − t)2Ψttt(x, t) dt

∥∥∥∥ ≤ Cτ 3. (3.75)
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By using the mean value theorem,

‖ξ3/2
Ψ − ξ

−1/2
Ψ ‖ = 2τ

∥∥∥∥
(

Ψ 3/2 − Ψ −1/2

2τ

)
− Rh

(
Ψ 3/2 − Ψ −1/2

2τ

)∥∥∥∥
≤ Cτhk+1

∥∥∥∥Ψ 3/2 − Ψ −1/2

2τ

∥∥∥∥
k+1

≤ Cτhk+1
∥∥Ψt(x, t∗)

∥∥
k+1, (3.76)

where t∗ ∈ (t−1/2, t3/2). Plugging (3.75) and (3.76) into (3.74) leads to

∥∥∥S1
2 − S0

2

∥∥∥ ≤ Cτ(τ 2 + hk+1). (3.77)

Then, taking vh = η
3/2
Ψ + η

−1/2
Ψ in (3.72) yields

‖η3/2
Ψ ‖2 − ‖η−1/2

Ψ ‖2 ≤
(
‖S1

2 − S0
2‖ + ‖T1

1 − T0
1‖

)
‖η3/2

Ψ + η
−1/2
Ψ ‖.

By (3.56), (3.65), (3.66), (3.73) and (3.77), the following inequality holds

‖η3/2
Ψ ‖ ≤ ‖η−1/2

Ψ ‖ + ‖S1
2 − S0

2‖ + ‖T1
1 − T0

1‖
≤ Cτ‖Dτ η

1
u‖ + Cτ‖η1

u‖ + Cτ(τ 2 + hk+1) ≤ C(τ 2 + hk+1), (3.78)

which together with the projection error (3.3) for ‖ξ3/2
Ψ ‖ yields

‖e3/2
Ψ ‖ ≤ ‖η3/2

Ψ ‖ + ‖ξ3/2
Ψ ‖ ≤ C(τ 2 + hk+1). (3.79)

By applying the Lemma 3.4 to the (3.38c) with n = 1, we also obtain the following error estimate

‖e3/2
Φ ‖ ≤ C‖e3/2

Ψ ‖ + Chk+1 ≤ C(τ 2 + hk+1). (3.80)

By using the inverse inequality (3.4), (3.35) and (3.78), there exist h3 > 0 such that when h < h3,

‖Ψ 3/2
h ‖∞ ≤‖RhΨ

3/2‖∞ + ‖η3/2
Ψ ‖∞ ≤ ‖RhΨ

3/2‖∞ + Ch−1‖η3/2
Ψ ‖ ≤ DΨ +CΨ h ≤ DΨ +1, (3.81)

‖Φ3/2
h ‖∞ ≤‖RhΦ

3/2‖∞ + Ch−1‖η3/2
Φ ‖ ≤ DΦ+CΨ h ≤ DΦ+1. (3.82)

Taking ωh = η
3/2
u in (3.43b) with n = 1 gives

i
〈
Dτ η

2
u, η3/2

u

〉
= A0

(
η3/2

u , η3/2
u

)
+

〈
G2

1, η3/2
u

〉
+

〈
R2

2, η3/2
u

〉
,
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where the imaginary part yields

1

2τ

(
‖η2

u‖2 − ‖η1
u‖2

)
= Im

〈
G2

1 + R2
2, η3/2

u

〉
≤

∥∥∥G2
1 + R2

2

∥∥∥ ∥∥∥η3/2
u

∥∥∥
≤ 1

2

∥∥∥G2
1 + R2

2

∥∥∥2 + 1

2

∥∥∥η3/2
u

∥∥∥2

= 1

2

(∥∥∥G2
1

∥∥∥2 +
∥∥∥R2

2

∥∥∥2 + 2
∥∥∥G2

1

∥∥∥ ∥∥∥R2
2

∥∥∥)
+ 1

8

∥∥∥η2
u + η1

u

∥∥∥2

≤
∥∥∥G2

1

∥∥∥2 +
∥∥∥R2

2

∥∥∥2 + 1

4

(
‖η2

u‖2 + ‖η1
u‖2

)
. (3.83)

By applying (3.35), (3.79)–(3.82), we have

∥∥∥G2
1

∥∥∥ ≤ ‖u3/2‖∞
(
‖e3/2

Φ ‖ + ‖e3/2
Ψ ‖

)
+

(
‖Φ3/2

h ‖∞ + ‖V(x)‖∞ + ‖Ψ 3/2
h ‖∞

)
‖e3/2

u ‖

≤ C
(
‖η2

u‖ + ‖η1
u‖

)
+ C

(
τ 2 + hk+1

)
. (3.84)

Plugging (3.46) and (3.84) into (3.83) gives

1

2τ

(
‖η2

u‖2 − ‖η1
u‖2

)
≤ C2

(
‖η2

u‖2 + ‖η1
u‖2

)
+ C(τ 2 + hk+1)2. (3.85)

In view of (3.65), (3.85) leads to

∥∥∥η2
u

∥∥∥ ≤ Cτ(τ 2 + hk+1), (3.86)

as long as τ < τ2 := 1/(2C2). Since 0 < τ < 1, we then conclude that

∥∥∥e2
u

∥∥∥ ≤ ‖ξ2
u ‖ + ‖η2

u‖ ≤ C(τ 2 + hk+1).

By using the triangle inequality and (3.86) gives

‖Dτ η
2
u‖ = 1

τ

∥∥∥η2
u − η1

u

∥∥∥ ≤ 1

τ

(∥∥∥η2
u

∥∥∥ +
∥∥∥η1

u

∥∥∥)
≤ C(τ 2 + hk+1). (3.87)

With (3.4), (3.35) and (3.86), there exists h4 > 0 such that when h < h4,

‖u2
h‖∞ ≤ ‖Rhu2‖∞ + ‖Rhu2 − u2

h‖∞ ≤ ‖Rhu2‖∞ + Ch−1‖η2
u‖ ≤ Du + 1. (3.88)
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Next, we take the difference between t2 and t1 of (3.43a) with n = 2 and vh = η
5/2
Ψ + η

1/2
Ψ , which

yields

‖η5/2
Ψ ‖2 − ‖η1/2

Ψ ‖2 ≤
(
‖S2

2 − S1
2‖ + ‖T2

1 − T1
1‖

)
‖η5/2

Ψ + η
1/2
Ψ ‖.

Similar to (3.73)–(3.77), by applying Lemma 3.6, (3.66), (3.67), (3.87) and (3.88), we have

‖S2
2 − S1

2‖ =
∥∥∥(

S2
1 − (ξ

5/2
Ψ + ξ

3/2
Ψ )

)
−

(
S1

1 − (ξ
3/2
Ψ + ξ

1/2
Ψ )

)∥∥∥
≤

∥∥∥S2
1 − S1

1

∥∥∥ +
∥∥∥ξ

5/2
Ψ − ξ

1/2
Ψ

∥∥∥
≤ Cτ(τ 2 + hk+1), (3.89)

and

‖T2
1 − T1

1‖ ≤ Cτ‖Dτ η
2
u‖ + Cτ‖Dτ η

1
u‖ + Cτ‖η2

u‖ + Cτhk+1 ≤ C(τ 2 + hk+1). (3.90)

By combining with (3.57), (3.89) and (3.90), we have

‖η5/2
Ψ ‖ ≤ ‖η1/2

Ψ ‖ + ‖S2
2 − S1

2‖ + ‖T2
1 − T1

1‖ ≤ C(τ 2 + hk+1). (3.91)

With the projection estimate (3.3), we get

‖e5/2
Ψ ‖ ≤ ‖η5/2

Ψ ‖ + ‖ξ5/2
Ψ ‖ ≤ C(τ 2 + hk+1). (3.92)

Applying the Lemma 3.4 to the (3.38c) with n = 2, it holds

‖e5/2
Φ ‖ ≤ C‖e5/2

Ψ ‖ + Chk+1 ≤ C(τ 2 + hk+1). (3.93)

Step 3. We assume that the estimates in (3.48)–(3.50) hold for 0 ≤ n ≤ m with m ≥ 2 as follows

max
0≤n≤m

∥∥en
u

∥∥ ≤ C
(
τ 2 + hk+1

)
, (3.94)

max
1≤n≤m

∥∥Dτ η
n
u

∥∥ ≤ C
(
τ 2 + hk+1

)
, (3.95)

max
0≤n≤m

∥∥∥en+1/2
Ψ

∥∥∥ ≤ C
(
τ 2 + hk+1

)
, (3.96)

max
0≤n≤m

∥∥∥en+1/2
Φ

∥∥∥ ≤ C(τ 2 + hk+1). (3.97)
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By using (3.35) and the inverse inequality (3.4), there exists h5 > 0 such that when h < h5, it holds for
0 ≤ n ≤ m,

‖un
h‖∞ ≤ ‖Rhun‖∞ + 1 ≤ Du + 1, (3.98)

‖Ψ n+1/2
h ‖∞ ≤ ‖RhΨ

n+1/2‖∞ + 1 ≤ DΨ + 1, (3.99)

‖Φn+1/2
h ‖∞ ≤ ‖RhΦ

n+1/2‖∞ + 1 ≤ DΦ + 1. (3.100)

Next, we establish that the estimates (3.94)–(3.97) also hold for n = m + 1. Taking the difference
between (3.43b) at tm+1 and tm−1 that gives

i〈Dτ η
m+1
u − Dτ η

m−1
u , ωh〉 = A0(η

m+1/2
u − ηm−3/2

u , ωh)

+ 〈Gm+1
1 − Gm−1

1 , ωh〉 + 〈Rm+1
2 − Rm−1

2 , ωh〉
= τ

2
A0(Dτ η

m+1
u + 2Dτ η

m
u + Dτ η

m−1
u , ωh)

+ 〈Gm+1
1 − Gm−1

1 , ωh〉 + 〈Rm+1
2 − Rm−1

2 , ωh〉,

which can be written pointwisely as

Dτ η
m+1
u − Dτ η

m−1
u = i

τ

2
Δh

(
Dτ η

m+1
u + 2Dτ η

m
u + Dτ η

m−1
u

)
+ Γ m+1

1 + Γ m+1
2 , (3.101)

where Γ m+1
1 := −iPh(R

m+1
2 − Rm−1

2 ), Γ m+1
2 := −iPh(G

m+1
1 − Gm−1

1 ) and Ph : L2(Ω) → Vc
h denotes

the L2 projection. By applying S−1
h to (3.101) and using the operators introduced in (3.20), (3.21) and

(3.25), it follows

Dτ η
m+1
u = (Bh − Ih)Dτ η

m
u + BhDτ η

m−1
u + S−1

h

2∑
j=1

Γ m+1
j . (3.102)

Applying Lemma 3.6 to (3.102) gives

‖Dτ η
m+1
u ‖ + ‖Dτ η

m
u ‖ ≤ 2

∥∥∥Sh(Dτ η
2
u)

∥∥∥ + 2
∥∥∥Sh(Dτ η

1
u)

∥∥∥ + 2
m∑

n=2

(
‖Γ n+1

1 ‖ + ‖Γ n+1
2 ‖

)
. (3.103)

Step 4. In this step, we use the standard integral remainder of Taylor expansion to estimate ‖Γ n+1
1 ‖ and

‖Γ n+1
2 ‖ in (3.103) based on the regularity assumption in (3.34). By definition,

‖Γ n+1
1 ‖ ≤‖Rn+1

2 − Rn−1
2 ‖ ≤ ‖Rn+1

1 − Rn−1
1 ‖ + ‖Dτ ξ

n+1
u − Dτ ξ

n−1
u ‖, (3.104)
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‖Γ n+1
2 ‖ ≤‖Gn+1

1 − Gn−1
1 ‖. (3.105)

We first estimate ‖Γ n+1
1 ‖. From (3.37), we obtain

‖Rn+1
1 − Rn

1‖ ≤
∥∥∥(un+1/2

t − Dτ un+1) − (un−1/2
t − Dτ un)

∥∥∥
+

∥∥∥Δ(un+1/2 − un+1/2 − un−1/2 + un−1/2)

∥∥∥
+

∥∥∥(Φn+1/2 + V(x) + Ψ n+1/2)(un+1/2 − un+1/2)

− (Φn−1/2 + V(x) + Ψ n−1/2)(un−1/2 − un−1/2)

∥∥∥. (3.106)

Next, we apply the Taylor expression to each term in (3.106) at tn. For the first term, it follows

∥∥∥(un+1/2
t − Dτ un+1) − (un−1/2

t − Dτ un)

∥∥∥
=

∥∥∥∥un+1/2
t − un−1/2

t − 1

τ

(
un+1 − 2un + un−1

)∥∥∥∥
≤

∥∥∥∥ 1

2!

∫ tn+1/2

tn
(tn+1/2 − t)2utttt(t) dt − 1

2!

∫ tn−1/2

tn
(tn−1/2 − t)2utttt(t) dt

− 1

3!
× 1

τ

∫ tn+1

tn
(tn+1 − t)3utttt(t) dt − 1

3!
× 1

τ

∫ tn−1

tn
(tn−1 − t)3utttt(t) dt

∥∥∥∥
≤

∥∥∥∥τ 3

16

∫ 1

0
(1 − s)2 utttt

(
tn + τ

2
s
)

ds + τ 3

16

∫ 1

0
(1 − s)2 utttt

(
tn − τ

2
s
)

ds

−τ 3

6

∫ 1

0
(1 − s)3utttt(tn + τ s) ds − τ 3

6

∫ 1

0
(1 − s)3utttt(tn − τ s) ds

∥∥∥∥ ≤ Cτ 3. (3.107)

For the second term, it holds

∥∥∥Δ(un+1/2 − un+1/2 − un−1/2 + un−1/2)

∥∥∥
≤

∥∥∥∥1

2
× 1

2!

∫ tn+1

tn
(tn+1 − t)2uttt(t) dt − 1

2!

∫ tn+1/2

tn
(tn+1/2 − t)2uttt(t) dt

+1

2
× 1

2!

∫ tn−1

tn
(tn−1 − t)2uttt(t) dt + 1

2!

∫ tn−1/2

tn
(tn−1/2 − t)2uttt(t) dt

∥∥∥∥
H2

≤ Cτ 3. (3.108)
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For the third item, it follows

∥∥∥(Φn+1/2 + V + Ψ n+1/2)(un+1/2 − un+1/2) − (Φn−1/2 + V + Ψ n−1/2)(un−1/2 − un−1/2)

∥∥∥
≤

∥∥∥Φn+1/2 + V(x) + Ψ n+1/2
∥∥∥∞

∥∥∥un+1/2 − un+1/2 − un−1/2 + un−1/2
∥∥∥

+
∥∥∥(Φn+1/2 − Φn−1/2) + (Ψ n+1/2 − Ψ n−1/2)

∥∥∥∞

∥∥∥un−1/2 − un−1/2
∥∥∥ . (3.109)

Similar to (3.108), it holds

∥∥∥un−1/2 − un−1/2
∥∥∥ ≤ Cτ 2, (3.110)

∥∥∥un+1/2 − un+1/2 − un−1/2 + un−1/2
∥∥∥ ≤ Cτ 3. (3.111)

In addition, Taylor’s theorem and the regularity assumption (3.34) imply

∥∥∥(Φn+1/2 − Φn−1/2) + (Ψ n+1/2 − Ψ n−1/2)

∥∥∥∞ =
∥∥∥∥∥
∫ tn+1/2

tn−1/2

Φt(s) ds +
∫ tn+1/2

tn−1/2

Ψt(s) ds

∥∥∥∥∥∞
≤ Cτ .

(3.112)

Therefore, using (3.107)–(3.112) and the regularity assumption (3.35), we conclude

∥∥∥Rn+1
1 − Rn

1

∥∥∥ ≤ Cτ 3. (3.113)

Moreover, by using the projection error estimate (3.3), it follows

‖Dτ ξ
n+1
u − Dτ ξ

n−1
u ‖ =

∥∥∥∥Rh

(
un+1 − un − un−1 + un−2

τ

)
− un+1 − un − un−1 + un−2

τ

∥∥∥∥
≤ C

1

τ

∫ τ

0

(∫ tn+s

tn−2+s

∥∥Rhutt(t) − utt(t)
∥∥ dt

)
ds ≤ Cτhk+1, (3.114)

where we have used

un+1 − un − un−1 + un−2 =
∫ τ

0

(∫ tn+s

tn−2+s
utt(t) dt

)
ds. (3.115)

(3.113) and (3.114) together with (3.104) imply

‖Γ n+1
1 ‖ ≤ ‖Rn+1

1 − Rn
1‖ + ‖Rn

1 − Rn−1
1 ‖ + ‖Dτ ξ

n+1
u − Dτ ξ

n−1
u ‖ ≤ Cτ(τ 2 + hk+1). (3.116)
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Next, we estimate ‖Γ n+1
2 ‖. From (3.39), it follows

∥∥∥Gn+1
1 − Gn−1

1

∥∥∥ ≤
∥∥∥(Ψ n+1/2un+1/2 − Ψ

n+1/2
h un+1/2

h ) − (Ψ n−3/2un−3/2 − Ψ
n−3/2
h un−3/2

h )

∥∥∥
+ ‖V(x)‖∞

∥∥∥(un+1/2 − un+1/2
h ) − (un−3/2 − un−3/2

h )

∥∥∥
+

∥∥∥(Φn+1/2un+1/2 − Φ
n+1/2
h un+1/2

h ) − (Φn−3/2un−3/2 − Φ
n−3/2
h un−3/2

h )

∥∥∥ .

(3.117)

For the first term in (3.117),

∥∥∥(Ψ n+1/2un+1/2 − Ψ
n+1/2
h un+1/2

h ) − (Ψ n−3/2un−3/2 − Ψ
n−3/2
h un−3/2

h )

∥∥∥
≤

∥∥∥(Ψ n+1/2 − Ψ n−3/2)(un−3/2 − un−3/2
h )

∥∥∥ +
∥∥∥(Ψ n+1/2 − Ψ

n+1/2
h )(un+1/2 − un−3/2)

∥∥∥
+

∥∥∥un−3/2
h (Ψ n+1/2 − Ψ n−3/2 − Ψ

n+1/2
h + Ψ

n−3/2
h )

∥∥∥
+

∥∥∥Ψ
n+1/2
h

(
un+1/2 − un−3/2 − un+1/2

h + un−3/2
h

)∥∥∥ := K1 + K2 + K3 + K4. (3.118)

By the Taylor expansion, the split (3.40), (3.41) and the projection errors, it is easy to obtain

K1 ≤ Cτ

2

∥∥∥un−1 + un−2 − un−1
h − un−2

h

∥∥∥ ≤ Cτ
(
‖ηn−1

u ‖ + ‖ηn−2
u ‖

)
+ Cτhk+1, (3.119)

K2 ≤
∥∥∥Ψ n+1/2 − Ψ

n+1/2
h

∥∥∥ ∥∥∥∥ (un+1 + un) − (un−1 + un−2)

2

∥∥∥∥ ≤ Cτ
(
τ 2 + hk+1

)
, (3.120)

where we have used (3.96). By (3.98), and using the mean value theorem, it holds

K3 ≤C‖en+1/2
Ψ − en−3/2

Ψ ‖ ≤ C‖ηn+1/2
Ψ − η

n−3/2
Ψ ‖ + Cτ

∥∥∥∥∥ξ
n+1/2
Ψ − ξ

n−3/2
Ψ

τ

∥∥∥∥∥
≤C‖ηn+1/2

Ψ − η
n−3/2
Ψ ‖ + Cτhk+1. (3.121)

Then, taking the difference of (3.43a) between two time levels and using (3.41) yields

(η
n+1/2
Ψ − η

n−3/2
Ψ , vh) = (Sn

2 − Sn−1
2 , vh) + (Tn

1 − Tn−1
1 , vh). (3.122)

Similar to (3.73) and (3.77), it follows

‖Tn
1 − Tn−1

1 ‖ ≤ Cτ‖Dτ η
n
u‖ + Cτ‖ηn

u‖ + Cτhk+1, (3.123)
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∥∥∥Sn
2 − Sn−1

2

∥∥∥ ≤ Cτ(τ 2 + hk+1). (3.124)

By setting vh = η
n+1/2
Ψ − η

n−3/2
Ψ in (3.122), applying Cauchy–Schwartz inequality, and using (3.123)

and (3.124),

‖ηn+1/2
Ψ − η

n−3/2
Ψ ‖ ≤ ‖Sn

2 − Sn−1
2 ‖ + ‖Tn

1 − Tn−1
1 ‖ ≤ Cτ

(‖Dτ η
n
u‖ + ‖ηn

u‖
) + Cτ(τ 2 + hk+1).

(3.125)

Plugging (3.125) into (3.121) gives

K3 ≤ Cτ
(‖Dτ η

n
u‖ + ‖ηn

u‖
) + Cτ(τ 2 + hk+1). (3.126)

By (3.44) and (3.99), K4 in (3.118) gives

K4 ≤C
∥∥∥(un+1/2 − un+1/2

h ) − (un−3/2 − un−3/2
h )

∥∥∥
≤Cτ

∥∥∥Dτ en+1
u + 2Dτ en

u + Dτ en−1
u

∥∥∥
≤Cτ

(∥∥∥Dτ η
n+1
u

∥∥∥ + ∥∥Dτ η
n
u

∥∥ +
∥∥∥Dτ η

n−1
u

∥∥∥)
+ Cτhk+1. (3.127)

Plugging (3.119), (3.120), (3.126) and (3.127) into (3.118) implies

∥∥∥(Ψ n+1/2un+1/2 − Ψ
n+1/2
h un+1/2

h ) − (Ψ n−3/2un−3/2 − Ψ
n−3/2
h un−3/2

h )

∥∥∥
≤ Cτ

(
‖Dτ η

n+1
u ‖ + ‖Dτ η

n
u‖ + ‖Dτ η

n−1
u ‖ + ‖ηn

u‖ + ‖ηn−1
u ‖ + ‖ηn−2

u ‖
)

+ Cτ(τ 2 + hk+1).

(3.128)

Similar to K4 in (3.127), the second term in (3.117) yields

∥∥∥en+1/2
u − en−3/2

u

∥∥∥ ≤ Cτ
(∥∥∥Dτ η

n+1
u

∥∥∥ + ∥∥Dτ η
n
u

∥∥ +
∥∥∥Dτ η

n−1
u

∥∥∥)
+ Cτhk+1. (3.129)

Similar to (3.118), the estimate of the third term in (3.117) is given by

∥∥∥(Φn+1/2un+1/2 − Φ
n+1/2
h un+1/2

h ) − (Φn−3/2un−3/2 − Φ
n−3/2
h un−3/2

h )

∥∥∥
≤ Cτ(τ 2 + hk+1) + Cτ

(
‖Dτ η

n+1
u ‖ + ‖Dτ η

n
u‖ + ‖Dτ η

n−1
u ‖ + ‖ηn

u‖ + ‖ηn−1
u ‖ + ‖ηn−2

u ‖
)

.

(3.130)
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Thereby, by (3.128), (3.129) and (3.130), it holds

‖Γ n+1
2 ‖ ≤

∥∥∥Gn+1
1 − Gn−1

1

∥∥∥ ≤ Cτ
(
‖ηn

u‖ + ‖ηn−1
u ‖ + ‖ηn−2

u ‖
)

+ Cτ
(
‖Dτ η

n+1
u ‖ + ‖Dτ η

n
u‖ + ‖Dτ η

n−1
u ‖

)
+ Cτ(τ 2 + hk+1). (3.131)

Step 5. In this step, we show that the estimates (3.94) and (3.95) hold for n = m + 1, that is

∥∥∥em+1
u

∥∥∥ ≤ C
(
τ 2 + hk+1

)
, (3.132)

∥∥∥Dτ η
m+1
u

∥∥∥ ≤ C
(
τ 2 + hk+1

)
. (3.133)

Taking n = 0 in (3.43b) and using (3.19) and η0
u = 0 yield

1

τ
〈Shη

1
u, ωh〉 = −i〈G1

1, ωh〉 − i〈R1
2, ωh〉, (3.134)

which by taking ωh = Shη
1
u in (3.134) and using the estimates (3.46), (3.63) and (3.65) yields

‖Shη
1
u‖ ≤ τ

(
‖G1

1‖ + ‖R1
2‖

)
≤ Cτ(τ 2 + hk+1). (3.135)

Using η0
u = 0 again gives

‖Sh(Dτ η
1
u)‖ = 1

τ
‖Shη

1
u‖ ≤ C(τ 2 + hk+1). (3.136)

Moreover, it also holds

‖Shη
2
u‖ ≤ ‖Thη

1
u‖ + Cτ

(
‖G2

1‖ + ‖R2
2‖

)
≤ ‖(2Ih − Sh)η

1
u‖ + Cτ

(
‖G2

1‖ + ‖R2
2‖

)
≤ 2‖η1

u‖ + ‖Shη
1
u‖ + Cτ(τ 2 + hk+1), (3.137)

where we have used (3.46), (3.65), (3.80), (3.135) and

∥∥∥G2
1

∥∥∥ ≤ ‖u3/2‖∞
(
‖e3/2

Φ ‖ + ‖e3/2
Ψ ‖

)
+

(
‖Φ3/2

h ‖∞ + ‖V(x)‖∞ + ‖Ψ 3/2
h ‖∞

)
‖e3/2

u ‖

≤ C
(
‖η2

u‖ + ‖η1
u‖

)
+ C

(
τ 2 + hk+1

)
. (3.138)
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Similar to (3.64), by using (3.46) and (3.138), it holds

1

2τ

(
‖η2

u‖2 − ‖η1
u‖2

)
= Im

〈
G2

1 + R2
2, η3/2

u

〉
≤

∥∥∥G2
1 + R2

2

∥∥∥ ∥∥∥η3/2
u

∥∥∥
≤ 1

2

∥∥∥G2
1 + R2

2

∥∥∥2 + 1

2

∥∥∥η3/2
u

∥∥∥2

≤ 1

2

(∥∥∥G2
1

∥∥∥2 +
∥∥∥R2

2

∥∥∥2 + 2
∥∥∥G2

1

∥∥∥ ∥∥∥R2
2

∥∥∥)
+ 1

8

∥∥∥η2
u + η1

u

∥∥∥2

≤
∥∥∥G2

1

∥∥∥2 +
∥∥∥R2

2

∥∥∥2 + 1

4

(
‖η2

u‖2 + ‖η1
u‖2

)
≤ C

(
‖η2

u‖2 + ‖η1
u‖2

)
+ C(τ 2 + hk+1)2. (3.139)

As long as τ < τ3 := min{τ1, 1/(2C)}, plugging (3.65) into (3.139) implies

‖η2
u‖ ≤ Cτ(τ 2 + hk+1). (3.140)

Then, it holds

‖Shη
2
u‖ ≤ Cτ(τ 2 + hk+1). (3.141)

By using (3.135) and (3.141),

‖Sh(Dτ η
2
u)‖ ≤ 1

τ

(
‖Shη

2
u‖ + ‖Shη

1
u‖

)
≤ C(τ 2 + hk+1). (3.142)

Plugging (3.116), (3.131), (3.136) and (3.142) into (3.103) and using initial estimates in Step 1 yield

‖Dτ η
m+1
u ‖ + ‖Dτ η

m
u ‖ ≤ Cτ

m∑
n=1

(
‖ηn

u‖ + ‖Dτ η
n+1
u ‖ + ‖Dτ η

n
u‖

)
+ C(τ 2 + hk+1). (3.143)

Setting ωh = η
n+1/2
u in (3.43b), and taking its imaginary part give

1

2τ

(
‖ηn+1

u ‖2 − ‖ηn
u‖2

)
= Im

〈
Gn+1

1 , ηn+1/2
u

〉
+ Im

〈
Rn+1

2 , ηn+1/2
u

〉

≤ 1

2

∥∥∥Gn+1
1

∥∥∥ ‖ηn+1
u + ηn

u‖ + 1

2

∥∥∥Rn+1
2

∥∥∥ ‖ηn+1
u + ηn

u‖. (3.144)

Similar to (3.63), we have

‖Gn+1
1 ‖ ≤

(
‖Φn+1/2

h ‖∞ + ‖V(x)‖∞ + ‖Ψ n+1/2
h ‖∞

)
‖en+1/2

u ‖

+ ‖un+1/2‖∞
(
‖en+1/2

Φ ‖ + ‖en+1/2
Ψ ‖

)
≤ C

(
‖ηn+1

u ‖ + ‖ηn
u‖

)
+ C(τ 2 + hk+1), (3.145)

where we have used the boundedness (3.99) and (3.100), and the estimates (3.96) and (3.97).
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Applying (3.46) and (3.145) upon simplification, (3.144) gives

‖ηn+1
u ‖ − ‖ηn

u‖ ≤ τ

∥∥∥Gn+1
1

∥∥∥ + τ

∥∥∥Rn+1
2

∥∥∥ ≤ Cτ
(
‖ηn+1

u ‖ + ‖ηn
u‖

)
+ Cτ

(
τ 2 + hk+1

)
, (3.146)

which upon summing up (3.146) from n = 1 to m leads to

‖ηm+1
u ‖ ≤‖η1

u‖ + C
(
τ 2 + hk+1

)
+ Cτ

m∑
n=1

(
‖ηn+1

u ‖ + ‖ηn
u‖

)
. (3.147)

The summation of (3.143) and (3.147) yields

‖ηm+1
u ‖ + ‖Dτ η

m+1
u ‖ + ‖Dτ η

m
u ‖ ≤ Cτ

m∑
n=1

(
‖ηn+1

u ‖ + ‖Dτ η
n+1
u ‖ + ‖Dτ η

n
u‖

)
+ C(τ 2 + hk+1).

(3.148)

By Gronwall’s inequality in Lemma 3.2, there exists τ4 > 0independent of m such that when τ < τ4,

‖ηm+1
u ‖ + ‖Dτ η

m+1
u ‖ + ‖Dτ η

m
u ‖ ≤ C

(
τ 2 + hk+1

)
, (3.149)

where C depends on T and is independent of m. The estimate (3.149), together with the projection error,
implies the estimates (3.132) and (3.133).
Step 6. Last, we show that (3.96) and (3.97) also hold for n = m + 1. By (3.4), (3.35), (3.147), and
τ ≤ Ch, there exist h6 > 0, depending on T , but independent of m such that when h < h6,

‖um+1
h ‖∞ ≤ ‖Rhum+1‖∞ + Ch−1‖ηm+1

u ‖ ≤ Du + Cuh ≤ Du + 1.

Setting vh = η
n+1/2
Ψ + η

n−3/2
Ψ in (3.122) gives

‖ηn+1/2
Ψ ‖ − ‖ηn−3/2

Ψ ‖ ≤ ‖Sn
2 − Sn−1

2 ‖ + ‖Tn
1 − Tn−1

1 ‖ ≤ Cτ
(‖Dτ η

n
u‖ + ‖ηn

u‖
) + Cτ(τ 2 + hk+1).

(3.150)

Summing up (3.150) from n = 1 to n = m + 1 gives

‖ηm+3/2
Ψ ‖ ≤ Cτ

m+1∑
n=1

(‖Dτ η
n
u‖ + ‖ηn

u‖
) + C(τ 2 + hk+1) ≤ C(τ 2 + hk+1), (3.151)

where we have used (3.56), (3.57), (3.94), (3.95) and (3.96) with n = m. The estimate (3.151) together
with the projection error implies

‖em+3/2
Ψ ‖ ≤ ‖ξm+3/2

Ψ ‖ + ‖ηm+3/2
Ψ ‖ ≤ C

(
τ 2 + hk+1

)
. (3.152)
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Lemma 3.4, (3.152) and (3.38c) further give

‖em+3/2
Φ ‖ ≤ C‖em+3/2

Ψ ‖ + Chk+1 ≤ C(τ 2 + hk+1).

Therefore, the estimates (3.94)–(3.97) hold for n = m + 1, if τ0 = max{τi}4
i=1 and h0 = min{hj}6

j=1,
which depend on T , but are independent of N. This completes the proof. �

4. Extension

The model equation (1.1) without the self-repulsion term |u|2u and the external potential will degenerate
to the SP equation with constant coefficients (Athanassoulis et al., 2023)

iut = −αΔu + βΦu, (x, t) ∈ Ω × (0, T], (4.1a)

ΔΦ = |u|2 − c, x ∈ Ω , (4.1b)

u(x, 0) = u0(x), x ∈ Ω , (4.1c)

u(x, t) = 0 and Φ(x) = 0, x ∈ ∂Ω , (4.1d)

where the parameter α > 0, β ∈ R.
Introducing an auxiliary variable Ψ , the system (4.1) can be equivalently expressed as

⎧⎨
⎩

Ψ = |u|2,
iut = −αΔu + βΦu,
ΔΦ = Ψ − c.

(4.2)

Then, the proposed relaxation FEM (2.21) for the nonlinear SP equation (1.1) reduces to the Besse-style
relaxation Crank–Nicolson FEM (Athanassoulis et al., 2023),

(
Ψ

n+1/2
h + Ψ

n−1/2
h , vh

)
=

(
2|un

h|2, vh

)
, ∀vh ∈ Vh, (4.3a)

i
〈
Dτ un+1

h , ωh

〉
= αA0

(
un+1/2

h , ωh

)
+ β

〈
Φ

n+1/2
h un+1/2

h , ωh

〉
, ∀ωh ∈ Vc

h , (4.3b)

A1

(
Φ

n+1/2
h , χh

)
= −

(
(Ψ

n+1/2
h − c), χh

)
, ∀χh ∈ Vh. (4.3c)

The following results hold for the scheme above.
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LEMMA 4.1. (Athanassoulis et al., 2023) For any τ > 0, the relaxation Crank–Nicolson FEM (4.3)
satisfies the discrete conservation for both mass and modified energy with 0 ≤ n ≤ N − 1, respectively

Mn+1
h = M0

h , (4.4)

En+1
h = E0

h, (4.5)

where the mass Mn+1
h = ∫

Ω
|un+1

h |2dx, and the modified energy

En+1
h = αA(un+1

h , un+1
h ) + β

2
A(Φ

n+3/2
h , Φn+1/2

h ).

Following the convergence analysis of the proposed scheme (2.21) for the nonlinear SP equation
(1.1), we can extend the current error estimates to the scheme (4.3) for the SP equation (4.1). More
specifically, we derive the following results.

THEOREM 4.1. Suppose that u, Ψ and Φ satisfy the regularity conditions (3.34). If τ ≤ Ch, then there
exists a constant τ0 > 0 and h0 > 0 such that when time step τ < τ0 and mesh size h < h0, the solutions
of the relaxation Crank–Nicolson finite element scheme (4.3) satisfy the following estimates

max
0≤n≤N−1

∥∥∥en+1
u

∥∥∥ ≤ C
(
τ 2 + hk+1

)
, (4.6)

max
0≤n≤N−1

∥∥∥en+1/2
Ψ

∥∥∥ ≤ C
(
τ 2 + hk+1

)
, (4.7)

max
0≤n≤N−1

∥∥∥en+1/2
Φ

∥∥∥ ≤ C(τ 2 + hk+1). (4.8)

The proof is similar to that of Theorem 3.2, thus we omit it here.

REMARK 4.2. The proposed method and the error analysis also have the potential to be applied to other
types of equations, such as the Gross–Pitaevskii–Poisson equation (Verma et al., 2021) and the Gross–
Pitaevskii–Poisson system (Sakaguchi & Malomed, 2020). The Gross–Pitaevskii–Poisson equation
incorporates a nonlocal mean density and additionally conserves the momentum, adding complexity
beyond (1.1), while the Gross–Pitaevskii–Poisson system involves the interaction between positive and
negative bosonic ions. We leave these explorations for future work.

5. Numerical experiments

In this section, we present numerical experiments to validate our theoretical analysis. This includes an
examination of the convergence rates and the conservation properties of the relaxation Crank–Nicolson
FEM. All numerical examples are implemented using the FEALPy package (Wei & Huang, 2017-2025).
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34 H. LIU ET AL.

TABLE 1 Time discretization errors with T = 0.1 and V(x1, x2) = V2(x1, x2)

τ 1.0e-02 5.0e-03 2.5e-03

‖uT/τ
h − uT/(2τ)

h ‖ 6.3247e-03 1.5870e-03 3.9710e-04
Order – 1.99 2.00

TABLE 2 Spatial discretization errors with T = 0.1 and V(x1, x2) = V2(x1, x2)

Qk ‖u50 − u100‖ Order ‖u100 −u200‖ Order ‖u200 −u400‖ Order

k = 1 1.8851e-02 – 4.7363e-03 1.99 1.1856e-03 2.00
k = 2 6.4115e-04 – 8.0828e-05 2.99 1.0144e-05 2.99

We consider the two-dimensional SP equation on Ω = [−8, 8]2,

iut(x1, x2, t) = −1

2
Δu + Φ(x1, x2, t)u + V(x1, x2)u + |u|2u, (x1, x2) ∈ Ω ,

−ΔΦ(x1, x2, t) = |u|2 − 1, (x1, x2) ∈ Ω ,

u(x1, x2, t) = 0, (x1, x2) ∈ ∂Ω ,

Φ(x1, x2, t) = 0, (x1, x2) ∈ ∂Ω ,

u(x1, x2, 0) = u0(x1, x2) = 1√
2π

e
−x2

1+x2
2

4 (x1 + ix2), (x1, x2) ∈ Ω .

(5.1)

Here, we consider three different external potentials V(x1, x2) = Vi(x1, x2), i = 0, 1, 2 with V0(x1, x2) =
0, V1(x1, x2) = x2

1+x2
2

2 and V2(x1, x2) = x2
1−x2

2
2 .

Test case 1. To validate the accuracy and convergence rate of the relaxation Crank–Nicolson FEM,
we take the Qk polynomials with k = 1, 2. As the exact solution is unavailable, we compute the time
discretization errors as ‖uT/τ

h − uT/(2τ)
h ‖, where uT/τ

h is finite element solution at t = T with time step τ .
Table 1 reports the time discretization error in L2 norm and the order of accuracy, utilising a sufficiently
small fixed spatial mesh size. Based on the obtained results, it is evident that the proposed method exhibits
second-order accuracy in time.

Test case 2. In Table 2, we compute the spatial discretization errors ‖uNC − u2NC‖ between the two-
level approximations at final time T = 0.1 with a sufficiently small fixed time step, where uNC denotes the
numerical solution on NC × NC meshes. It is observed that the proposed method demonstrates (k + 1)th
order accuracy in space.

Test case 3. Subsequently, we apply the proposed method using a mesh with NC = 80 for spatial
discretization and a time step of τ = 2 × 10−3, based on Q2 polynomials, to verify the performance of
our numerical scheme in preserving mass and energy conservation properties. For 0 ≤ n ≤ N − 1, we
define the mass change and energy change as follows:

Mass Change =
∣∣∣∣Mh(tn) − Mh(0)

Mh(0)

∣∣∣∣ , Energy Change =
∣∣∣∣Eh(tn) − Eh(0)

Eh(0)

∣∣∣∣ . (5.2)
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RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 35

FIG. 1. Evolution of the mass and modified energy with V(x1, x2) = V0(x1, x2).

FIG. 2. Evolution of the mass and energy with V(x1, x2) = V1(x1, x2).

The discrete mass and energy, as defined in Lemma 2.2, are computed for V(x1, x2) = Vi(x1, x2),
with i = 0, 1, 2, and the changes in mass and energy are illustrated in Figs 1–3, respectively. Although
the case with V(x1, x2) = V2(x1, x2) shows a relatively larger energy error compared with other cases, as
seen in Fig. 3, the results suggest that both mass and modified energy are well preserved at the discrete
level for all cases.

For cases of V(x1, x2) = V1(x1, x2) and V(x1, x2) = V2(x1, x2), we also compute a direct
approximation of the original energy in (1.3) at tn, defined as

Ẽn
h :=

∫
Ω

(
1

2
|∇un

h|2 + 1

2μ
|∇Φ̄n

h |2 + V(x)|un
h|2 + 1

2
|un

h|4
)

dx, 0 ≤ n ≤ N, (5.3)

where

Φ̄n
h = Φ

n+1/2
h + Φ

n−1/2
h

2
.

For both cases, the changes in the approximated original energy Ẽn
h, defined similarly to the energy

change in (5.2), are also shown in Figs 2 and 3. Although the changes in the directly approximated
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FIG. 3. Evolution of the mass and energy with V(x1, x2) = V2(x1, x2).

FIG. 4. The patterns evolution of the wave function |u(x1, x2, t)| with V(x1, x2) = V0(x1, x2).

FIG. 5. The patterns evolution of the wave function |u(x1, x2, t)| with V(x1, x2) = V1(x1, x2).

original energy are relatively larger than those of the modified energy, the original energy remains well
preserved in both cases.

Test case 4. We present the evolution of the solution in Figs 4–6 for the external potentials V(x1, x2) =
Vi(x1, x2), i = 0, 1, 2, respectively, using a mesh with NC = 80 and a time step of τ = 1 × 10−3, based
on Q2 polynomials.

We first conduct numerical tests for the case with a zero potential, i.e., V(x1, x2) = V0(x1, x2).
Figure 4 shows the patterns of the wave function |u(x, y, t)| at time t = 0, 5, 10, from which we can
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FIG. 6. The patterns evolution of the wave function |u(x1, x2, t)| with V(x1, x2) = V2(x1, x2).

find that the pattern of the initial solution has evolved, but not significantly, and the pattern evolves
around the center of the pattern.

Next, we introduce different external potentials under the same conditions to observe the resulting
changes in the solution. This allows us to evaluate the performance of the proposed numerical method
by comparing our results with similar findings in the literature.

We present the evolution of the solution in Fig. 5 with potential V(x1, x2) = V1(x1, x2) at times t = 0,
t = 5 and t = 10. With the external potential V1, the solution exhibits a pattern similar to that seen with
zero potential. Notably, the pattern with V0 at t = 10 (see Fig. 4(c)) and the pattern with V1 at t = 5
(see Fig. 5(b)) are quite similar. This suggests that the external potential V1 accelerates the evolution of
patterns, particularly around the center of the pattern, compared to the zero potential case. Additionally,
similar patterns of evolution to those in Fig. 5 were also observed in (Wang et al., 2018).

We also introduce a different external potential V(x1, x2) = V2(x1, x2) for problem (5.1). The
evolution of patterns is presented in Fig. 6 at different times from t = 0 to t = 10. Under the influence
of the external potential V2, the patterns are driven away from the center, and similar patterns were also
observed in (Yi & Liu, 2022).

Test case 5. We compare the performance of the proposed relaxation Crank–Nicolson finite element
algorithm (2.21), or Algorithm 2.1, with the IM from (Yi & Liu, 2022) by solving the SP problem (5.1)
with V(x1, x2) = V2(x1, x2).

First, we compare the performance of Algorithm 2.1 with that of the IM using DG discretization
(IM-DG) from (Yi & Liu, 2022). The parameters are set as follows: time step τ = 0.001, mesh size
NC × NC = 80 × 80 and Q2 polynomials. In the DG discretization, the penalty parameters are β0 = 10
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TABLE 3 The computational time with T = 10 and V(x1, x2) = V2(x1, x2)

Algorithm 2.1 IM-DG IM-DG
(linear, no iteration) (Tols = 10−1) (Tols = 10−6)

33411.52s 195226.01s 407897.47s

FIG. 7. The patterns evolution of the mass and energy for Algorithm 2.1 and IM-DG with τ = 0.001.

and β1 = 1/12. For the IM-DG method, the iteration is terminated when the prescribed tolerance (Tols =
10−1 or 10−6) is reached. The corresponding solution patterns at t = 10 are shown in Fig. 8(a,b), and they
are comparable to that of Algorithm 2.1 as shown in Fig. 6(f). The corresponding CPU times of Algorithm
2.1 and IM-DG is reported in Table 3, showing that Algorithm 2.1 is significantly more efficient, while
the IM-DG method requires substantially more computational time. The evolution of mass, modified
energy, and original energy is presented in Fig. 7. Both methods conserve mass well. Algorithm 2.1
preserves the modified energy with high accuracy, and the original energy is also conserved, though
with a slightly larger error. In contrast, the IM-DG method exhibits noticeably larger relative errors in
conserving both the modified and original energies compared to Algorithm 2.1.

Secondly, to eliminate the influence of the DG discretization and to provide a fairer comparison with
Algorithm 2.1, we consider a IM-FEM variant, obtained by replacing the DG discretization in IM-DG
from (Yi & Liu, 2022) with the FEM. This modification allows a larger time step for IM to produce a
comparable final pattern. Specifically, we consider the time step both τ = 0.001 and τ = 0.01, mesh
size NC × NC = 80 × 80, and employ Q2 polynomials for both Algorithm 2.1 and IM-FEM. In IM-
FEM, the iteration is terminated either after two fixed steps or upon reaching the prescribed tolerance
(Tols = 10−1 or 10−6). The solution patterns at t = 10 with time step τ = 0.01 are presented in
Fig. 8(c–f), and they are comparable to the pattern obtained by Algorithm 2.1 with time step τ = 0.001,
as shown in Fig. 6(f). The corresponding CPU times, reported in Tables 4 and 5, indicate that Algorithm
2.1 is the most efficient, while IM-FEM requires at least twice as much CPU time of Algorithm 2.1.
The evolution of mass, modified energy and original energy is presented in Figs 9 and 10. Both methods
conserve mass well. Algorithm 2.1 preserves the modified energy with high accuracy, while the original
energy is also conserved, albeit with slightly larger errors. In contrast, Figs 9 and 10 demonstrate that
IM-FEM requires a smaller time step and smaller iteration tolerance to preserve its modified energy, and
it exhibits larger relative errors in conserving the original energy.
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FIG. 8. The patterns of the wave function |u(x1, x2, t)| at t = 10 with V2(x1, x2).

TABLE 4 The computational time at T = 10 with τ = 0.001 and V(x1, x2) = V2(x1, x2)

Algorithm 2.1 IM-FEM IM-FEM IM-FEM
(linear, no iteration) (two-step iteration) (Tols = 10−1) (Tols = 10−6)

33411.52s 64815.95s 91914.44s 92866.31s

TABLE 5 The computational time at T = 10 with τ = 0.01 and V(x1, x2) = V2(x1, x2)

Algorithm 2.1 IM-FEM IM-FEM IM-FEM
(linear, no iteration) (two-step iteration) (Tols = 10−1) (Tols = 10−6)

3488.17s 6397.19s 9334.41s 11717.49s

6. Concluding remarks

A structure-preserving relaxation Crank–Nicolson FEM has been proposed for the SP equation that
contains the self-repulsion |u|2u in the Schrödinger equation and the charge density |u|2 in the Poisson
equation, relying on a decoupled system that is equivalent to the original equation. The fully discrete
scheme is linear and is easy to implement without resorting to any iteration method. In addition, the finite
element approximation is demonstrated to be both mass and modified energy conservative, irrespective
of the mesh and time step. Optimal L2 error estimates are established for the fully discrete scheme with
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FIG. 9. The patterns evolution of the mass and energy for Algorithm 2.1 and IM-FEM with τ = 0.001.

FIG. 10. The patterns evolution of the mass and energy for Algorithm 2.1 and IM-FEM with τ = 0.01.

second order accuracy in time and (k + 1)th accuracy in space. Numerical tests have been presented to
verify the effectiveness and robustness of the proposed method. The proposed relaxation Crank–Nicolson
FEM is a very competitive algorithm for solving the SP equation.

The spatial discretization utilised in this paper is the FEM, it is noteworthy that the DG method (Yi &
Liu, 2022) can also be a viable alternative, in which the Poisson equation can be solved by the direct DG
method (Yin et al., 2014, 2018). The proposed scheme preserves mass and a modified energy. Developing
efficient numerical methods that preserve the original energy remains an important and challenging
problem, which we leave for future work. In the case of the three-dimensional SP equation, the self-
repulsion term is substituted by |u|4/3u. Extending the current findings to encompass this scenario could
be an intriguing direction for future research, which we intend to pursue.

Funding

NSFC Project (12431014 to N.Y.). University of Texas at El Paso Startup Award to P.Y.

Conflicts of interest

The authors declare no conflict of interest.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf117/8413501 by The U
niversity of Texas at El Paso user on 05 January 2026



RELAXATION CRANK–NICOLSON FEM FOR SP EQUATION 41

REFERENCES

ARRIOLA, E. & SOLER, J. (2001) A variational approach to the Schrödinger–Poisson system: asymptotic behaviour,
breathers, and stability. J. Statist. Phys., 103, 1069–1105.

ATHANASSOULIS, A., KATSAOUNIS, T., KYZA, I. & METCALFE, S. (2023) A novel, structure-preserving, second-order-
in-time relaxation scheme for Schrödinger–Poisson systems. J. Comput. Phys., 490, 112307. https://www.
sciencedirect.com/science/article/pii/S0021999123004023

AUZINGER, W., KASSEBACHER, T., KOCH, O. & THALHAMMER, M. (2017) Convergence of a Strang splitting finite element
discretization for the Schrödinger–Poisson equation. Math. Model. Numer. Anal., 51, 1245–1278.

BERTRAND, P., VAN TUAN, N., GROS, M., IZRAR, B., FEIX, M., & GUTIERREZ, J. (1980) Classical Vlasov plasma
description through quantum numerical methods. J. Plasma Phys., 23, 401–422.

BESSE, C. (2004) A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal., 42, 934–952.
BESSE, C., DESCOMBES, S., DUJARDIN, G. & LACROIX-VIOLET, I. (2021) Energy-preserving methods for nonlinear

Schrödinger equations. IMA J. Numer. Anal., 41, 618–653.
BRENNER, S. C. & SCOTT, L. R. (2008) The Mathematical Theory of Finite Element Methods, 3rd edn. New York:

Springer.
CAI, Y., ROSENKRANZ, M., LEI, Z. & BAO, W. (2010) Mean-field regime of trapped dipolar Bose-Einstein condensates

in one and two dimensions. Phys. Rev. A, 82, 043623.
CASTELLA, F. (1997) L2 solutions to the Schrödinger–Poisson system: existence, uniqueness, time behavior, and

smoothing effects. Math. Mod. Meth. Appl. Sci., 7, 1051–1083.
CIARLET, P. G. & ODEN, J. T. (1978) The finite element method for elliptic problems. Elsevier, 45, 968–969.
COTNER, E. (2016) Collisional interactions between self-interacting nonrelativistic boson stars: effective potential

analysis and numerical simulations. Phys. Rev. D, 94, 063503.
EHRHARDT, M. & ZISOWSKY, A. (2006) Fast calculation of energy and mass preserving solutions of Schrödinger–

Poisson systems on unbounded domains. J. Comput. Appl. Math., 187, 1–28.
GONG, C., SHE, M., YUAN, W. & ZHAO, D. (2022) SAV Galerkin-Legendre spectral method for the nonlinear

Schrödinger-Possion equations. Electron. Res. Arch., 30, 943–960.
HEYWOOD, J. G. & RANNACHER, R. (1990) Finite-element approximation of the nonstationary Navier-stokes problem.

Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal., 27, 353–384.
LANGE, H., TOOMIRE, B. & ZWEIFEL, P. F. (1995) An overview of Schrödinger–Poisson problems. Rep. Math. Phys.,

36, 331–345.
LANGE, H. & ZWEIFEL, P. F. (1997) Mixed boundary-value problems for the two-dimensional Schrödinger–Poisson

system. Rep. Math. Phys., 39, 283–297.
LUBICH, C. (2008) On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math.

Comp., 77, 2141–2153.
MARKOWICH, P., RINGHOFER, C. & SCHMEISER, C. (1990) Semiconductor Equations. Vienna: Springer.
MASAKI, S. (2011) Energy solution to a Schrödinger–Poisson system in the two-dimensional whole space. SIAM J.

Math. Anal., 43, 2719–2731.
PAREDES, A., OLIVIERI, D. N. & MICHINEL, H. (2020) From optics to dark matter: a review on nonlinear Schrödinger–

Poisson systems. Physica D, 403, 132301.
RINGHOFER, C. & SOLER, J. (2000) Discrete Schrödinger–Poisson systems preserving energy and mass. Appl. Math.

Lett., 13, 27–32.
RUFFINI, R. & BONAZZOLA, S. (1969) Systems of self-gravitating particles in general relativity and the concept of an

equation of state. Phys. Rev., 187, 1767–1783.
SAKAGUCHI, H. & MALOMED, B. A. (2020) Gross–Pitaevskii–Poisson model for an ultracold plasma: density waves

and solitons. Phys. Rev. Res., 2, 033188.
SHUKLA, P. K. & ELIASSON, B. (2006) Formation and dynamics of dark solitons and vortices in quantum electron

plasmas. Phys. Rev. Lett., 96, 245001.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf117/8413501 by The U
niversity of Texas at El Paso user on 05 January 2026

https://www.sciencedirect.com/science/article/pii/S0021999123004023
https://www.sciencedirect.com/science/article/pii/S0021999123004023
https://www.sciencedirect.com/science/article/pii/S0021999123004023
https://www.sciencedirect.com/science/article/pii/S0021999123004023
https://www.sciencedirect.com/science/article/pii/S0021999123004023
https://www.sciencedirect.com/science/article/pii/S0021999123004023
https://www.sciencedirect.com/science/article/pii/S0021999123004023
https://www.sciencedirect.com/science/article/pii/S0021999123004023


42 H. LIU ET AL.

SHUKLA, P. K. & ELIASSON, B. (2011) Colloquium: nonlinear collective interactions in quantum plasmas with
degenerate electron fluids. Rev. Modern Phys., 83, 885–906.

VERMA, A. K., PANDIT, R. & BRACHET, M. E. (2021) Formation of compact objects at finite temperatures in a dark-
matter-candidate self-gravitating bosonic system. Phys. Rev. Res., 3, L022016.

WANG, H., LIANG, Z. & LIU, R. (2018) A splitting Chebyshev collocation method for Schrödinger–Poisson system.
Comp. Appl. Math., 37, 5034–5057.

WEI, H. & HUANG, Y. (2017-2025) FEALPy: Finite Element Analysis Library in Python https://github.com/weihuayi/
fealpy. Xiangtan University.

YI, N. & LIU, H. (2022) A mass-and energy-conserved DG method for the Schrödinger–Poisson equation. Numer.
Algorithms, 89, 905–930.

YIN, P., HUANG, Y. & LIU, H. (2014) An iterative discontinuous Galerkin method for solving the nonlinear Poisson–
Boltzmann equation. Commun. Comput. Phys., 16, 491–515.

YIN, P., HUANG, Y. & LIU, H. (2018) Error estimates for the iterative discontinuous Galerkin method to the nonlinear
Poisson-Boltzmann equation. Commun. Comput. Phys., 23, 168–197.

ZHANG, Y. (2013) Optimal error estimates of compact finite difference discretizations for the Schrödinger–Poisson
system. Commun. Comput. Phys., 13, 1357–1388.

ZOURARIS, G. E. (2023) Error estimation of the relaxation finite difference scheme for the nonlinear Schrödinger
equation. SIAM J. Numer. Anal., 61, 365–397.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf117/8413501 by The U
niversity of Texas at El Paso user on 05 January 2026

https://github.com/weihuayi/fealpy
https://github.com/weihuayi/fealpy
https://github.com/weihuayi/fealpy
https://github.com/weihuayi/fealpy
https://github.com/weihuayi/fealpy

	 A structure-preserving relaxation Crank--Nicolson finite element method for the Schrodinger--Poisson equation
	 1.Introduction
	 2.The relaxation Crank--Nicolson FEM
	 3.Error estimates for the fully discrete system
	 4.Extension
	 5.Numerical experiments
	 6.Concluding remarks


