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Abstract
In this paper, we propose a novel second-order dynamical low-rankmass-lumped finite
elementmethod for solving theAllen-Cahn equation, a semilinear parabolic partial dif-
ferential equation. The matrix differential equation of the semi-discrete mass-lumped
finite element scheme is decomposed into linear and nonlinear components using
the second-order Strang splitting method. The linear component is solved analyti-
cally within a low-rank manifold, while the nonlinear component is discretized using
a second-order augmented basis update & Galerkin integrator, in which the S-step
matrix equation is solved by the explicit 2-stage strong stability-preserving Runge-
Kutta method. The algorithm has lower computational complexity than the full-rank
mass-lump finite element method. The dynamical low-rank finite element solution is
shown to conserve mass up to a truncation tolerance at each time step for the con-
servative Allen-Cahn equation. Meanwhile, the modified energy is dissipative up to a
high-order error and is hence stable. Numerical experiments validate the theoretical
results. Symmetry-preserving tests highlight the robustness of the proposedmethod for
long-time simulations and demonstrate its superior performance compared to existing
methods.
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1 Introduction

We are interested in developing high-order numerical methods for solving gradient
flows using low-dimensional surrogates that effectively capture their essential features.
Dynamical low-rank approximation (DLRA) [30] is an emergingmethod that provides
significant computational savings for solving many high-dimensional dynamical sys-
tems (e.g., [23]). Gradient flows are inherently high-dimensional but typically evolve
toward an equilibrium exhibiting a low-rank structure, such as phase separations or
the disappearance of patterns. In this paper, we propose a dynamical low-rank finite
element method for solving the Allen-Cahn (AC) equation, a typical L2-gradient flow
of the associated energy functional.

The AC equation [1] was originally developed to model the motion of anti-phase
boundaries in crystalline solids, and the classical AC equation is given by

{
wt = ε2�w + f (w), x ∈ �, t ∈ (0, T ],
w(x, 0) = w0, x ∈ �,

(1.1)

subject to periodic or homogeneous Neumann boundary condition, ∂nw = 0, on ∂�.
For simplicity of the presentation, we take � ⊂ R

2 to be a convex, bounded domain.
Here, w represents the concentration of one of the two metallic components of an
alloy, and the parameter ε denotes the interfacial width, which is typically small. The
nonlinear function f (w) is given by f (w) = −F ′(w), where F(w) = 1

4

(
1 − w2

)2
is the double-well potential function.

The mass of solution in (1.1) is not conserved, i.e., d
dt

∫
�

wdx �= 0. A nonlocal
Lagrange multiplier was introduced in [42] to construct the conservative AC equation

wt = ε2�w + f̄ (w), (1.2)

where the modified nonlinear term f̄ (w) in (1.2) is defined as f̄ (w) := f (w)−λ(w),
and λ(w) is the Lagrange multiplier enforcing mass conservation. Two primary forms
of λ(w) have been proposed, as described by Rubinstein and Sternberg [42]:

RSLM: λ(w) = 1

|�|
∫

�

f (w)dx, (1.3)

and the nonlocal multiplier proposed by Brassel and Bretin [4]:

BBLM: λ(w) =
∫
�

f (w)dx∫
�

√
4F(w)dx

√
4F(w). (1.4)

Both nonlocal Lagrange multipliers have been widely used in conservative AC equa-
tions [29, 33, 47, 52, 57]. Since the RSLM multiplier depends only on time, it has
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limitations in preserving small features. Brassel and Bretin suggested that the space-
time dependent Lagrange multiplier (1.4) offered better mass conservation properties.

The AC equation (1.1) can be viewed as the L2-gradient flow of the following
Ginzburg-Landau energy functional:

E(w) =
∫

�

(
ε2

2
|∇w|2 + F(w)

)
dx. (1.5)

Meanwhile, the conservative AC equation (1.2) can be interpreted as the L2-gradient
flow of the reformulated energy functional:

E(w) =
∫

�

(
ε2

2
|∇w|2 + F(w) +

∫ w

0
λ(s)ds

)
dx. (1.6)

The solutions of both AC equation (1.1) and its conservative AC equation (1.2) satisfy
the energy dissipation law,

d

dt
E(w) =

(
δE(w)

δw
,wt

)
= −

∥∥∥∥∂w

∂t

∥∥∥∥
2

≤ 0, ∀t > 0, (1.7)

where E(w) is given by (1.5) for the classical AC equation (1.1), and by (1.6) for
the conservative AC equation (1.2). Moreover, the conservative form (1.2) conserves
mass, i.e.,

d

dt

∫
�

wdx = 0. (1.8)

Preserving the physical properties, (1.7), and (1.8) in the conservative case, at the
discrete level for the AC equation (1.1) and its conservative form (1.2), is a chal-
lenging and compelling research topic. Many efficient numerical methods have been
developed to preserve these properties, including the invariant energy quadratization
(IEQ) methods [10, 53, 54], scalar auxiliary variable (SAV) methods [22, 44, 45],
splitting methods [36, 37], integrating factor Runge-Kutta (IFRK) methods [27, 28,
56], and exponential time differencing (ETD) methods [12, 14, 15, 46]. However,
preserving the physical properties, even within acceptable tolerances, while reducing
the computational complexity of these methods is a worthwhile endeavor.

The DLRAmethods [30], which can be traced back to the Dirac–Frenkel–McLach-
lan variational principle from the 1930s [13, 21], have emerged as powerful tools
for efficiently modeling high-dimensional systems whose dynamics evolve on lower-
dimensional manifolds. More recently, the methods have been widely used in various
fields, includingweakly compressible flows [16], radiation transport equations [17, 20,
41], hyperbolic problems [32], advection-diffusion equations [39], and neural network
applications [43]. Further reviews can be found in [18] and the references therein.

The DLRA methods evolve a dynamical system on the Riemannian manifold of
fixed-rank matrices by projecting the right-hand side of a matrix differential equation
onto the tangent space of the manifold, resulting in a set of differential equations that
govern the factors of an SVD-type decomposition. A projector-splitting integrator for
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factorized differential equations in DLRAwas introduced in [38]. Later on, Ceruti and
Lubich proposed a robust, basis-update & Galerkin (BUG) integrator, also known as
an unconventional integrator [8]. This alternative integrator eliminates the backward
time integration substep inherent in the projector-splitting approach, which can be
unstable for dissipative problems. Additionally, the BUG integrator facilitates greater
parallelism in its substeps [7]. However, the BUG integrator relies on a fixed rank,
which limits its applicability when the optimal rank is either unknown or evolves
dynamically during the computation. To overcome this limitation and enhance the
efficiency of solving sub-differential equations in DLRA, Ceruti et al. introduced a
rank-adaptive integrator [6], which mitigates unwanted projection errors in the S-step
of the BUG integrator by employing augmented bases. More recently, the second-
order augmented BUG integrator [5, 31] and high-order BUG integrator [40] were
introduced, offering improved accuracy and robustness.

Both the finite elementmethod (FEM) and the discontinuousGalerkin (DG)method
are high-order numerical approaches offering significant advantages, including high-
order accuracy on compact stencils, compatibility with hp-adaptivity, and flexibility in
handling complex geometries. The integration of dynamical low-rank approximation
(DLRA) with the DG method was explored for a homogeneous kinetic equation in
[55], a solid-body rotation problem [24]. However, applying DLRA to the DG bilin-
ear form for the Laplace term in the AC equations introduces additional complexity.
The formulation on cell interfaces leads to an approximation involving a sum of four
additional SVD-like matrices with differing bases, necessitating the development of
specialized solvers for the resulting DLRA system. To address this complexity, we
adopt FEM in the DLRA framework, where the bilinear form is approximated using a
single SVD-like matrix. This approach significantly reduces the computational com-
plexity of solving the DLRA while maintaining the high-order accuracy of FEM.
Besides, it could be extended to nonuniform meshes with rectangular elements.

Integrating DLRAwith numerical methods typically requires the basis functions in
different directions to be orthogonal. Unlike the discontinuous Galerkin (DG) method
[55], this orthogonality condition is not inherently satisfied by the FEM. To address
this, we employ the mass-lumped finite element method [9], which substitutes the L2

inner products in the variational formulationwith piecewise fixed-pointGauss-Lobatto
quadratures. While this approach introduces a numerical integration error relative to
the original variational formulation, it does not compromise the accuracy of the finite
element approximation. Moreover, the mass-lumped finite element formulation pro-
vides essential benefits for integration with DLRA: (i) The basis functions in different
directions are orthogonal, making it well-suited for the integration. (ii) The coefficient
matrices for polynomial-type nonlinear terms can be explicitly expressed using the
Hadamard product, facilitating the low-rank approximation of the nonlinear terms.

To accurately approximate the solution to the AC problems, we primarily focus on
second-order time discretization, with only a brief remark on the first-order discretiza-
tion. Specifically, we employ the second-order Strang splitting method to decouple
the linear and nonlinear components of the AC equations. For the linear part, we
solve it analytically within a low-rank manifold. For the nonlinear part, we design
a second-order augmented BUG integrator, inspired by the approach in [5]. Specif-
ically, we will employ the explicit 2-stage strong stability preserving Runge-Kutta
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method for the S-step matrix differential equation. Building on these techniques, we
develop the BUG mass-lumped finite element method (BUG-MLFEM). This method
employs the same formulation as the full-rank mass-lumped finite element method
(FR-MLFEM) while computing solutions within low-rank subspaces of the finite ele-
ment space. The computational complexity of both FR-MLFEM and BUG-MLFEM
is dominated by the linear component. Specifically, FR-MLFEM has a complexity
of O((m2 + n2)min{m, n}), whereas BUG-MLFEM reduces this to O((m2 + n2)r),
where m and n denote the number of unknowns in each direction, and r is the rank of
the manifold. The dynamical low-rank finite element solution is shown to conserve the
mass up to a truncation tolerance at each time step. The modified energy is dissipative
up to a high-order error of O(τ (τ 2 + hk+1)), where τ is the time step, h is the mesh
size, and k is the degree of the polynomials. Consequently, the energy remains stable.
Numerical examples are provided to validate the theoretical findings, with symmetry-
preserving tests underscoring the robustness of the proposed method for long-time
simulations.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the for-
mulation of thematrix differential equations and propose a second-order FR-MLFEM.
In Sect. 3, we develop a second-order BUG-MLFEM based on the Strang-splitting
method, incorporating an exact integrator for the linear component and a second-order
augmented BUG integrator for the nonlinear component. Additionally, we analyze the
conservation properties of the proposed method. Numerical examples are provided in
Sect. 4, and concluding remarks are presented in Sect. 5.

2 Matrix differential equation

Consider the AC-type semilinear parabolic equation

wt = ε2�w + N (w), in � × (0, T ),

w(x, t = 0) = w0(x), in � × {0},
∂nw = 0, on ∂� × (0, T ),

(2.1)

where the N (w) = f (w) for the classical AC equation (1.1), and N (w) = f̄ (w) for
the conservative AC equation (1.2).

2.1 1D semi-discrete finite element scheme

To derive the matrix ODE of (2.1), we illustrate the idea of the mass-lumped finite
element method using its one-dimensional formulation. Let � = I = [a, b] and a =
x1 < x2 < . . . < xMk+1 = b be theGauss-Lobatto points, where xik+1, i = 0, . . . , M
are the nodal points.Consider a uniformmesh sizeh = xik+1−x(i−1)k+1 = (b−a)/M .
We define the finite element space

V k
h =

{
v ∈ H1(I ) : v|Ii ∈ P

k, i = 1, ..., M
}

, (2.2)
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where Ii = [x(i−1)k+1, xik+1] and P
k denotes the space of polynomials of degree no

more than k. Let x(i−1)k+ j and ω j , j = 1, . . . , k + 1 be the quadrature points and
weights of (k + 1)-point Gauss-Lobatto quadrature on the subinterval Ii , and denote

ω̄(i−1)k+ j =
{

ω j , 2 ≤ j ≤ k,

2ω j , j = 1, k + 1.
(2.3)

Given functions f , g, the L2 inner product ( f , g) = ∫
�

f gdx is approximated by the
piecewise Gauss-Lobatto quadrature

( f , g)h =
Mk+1∑
j=1

ω̄ j f (x j )g(x j ). (2.4)

The norm associated with the inner product in (2.4) is defined by

‖ f ‖h = √
( f , f )h, ∀ f ∈ V k

h .

Note that the (k + 1)-point Gauss-Lobatto quadrature is exact for polynomials of
degree up to 2k − 1. Then for any wh, vh ∈ V k

h , it holds

(∂xwh, ∂xvh) = (∂xwh, ∂xvh)h . (2.5)

The variational formulation of the AC equation (2.1) is to find w ∈ L2((0, T ]; H1

(�)) such that:

(wt , v) = −ε2(∂xw, ∂xv) + (N (w), v), ∀v ∈ H1(�). (2.6)

Taking v = vh ∈ V k
h and approximating the L2 inner products in (2.6) using the

Gauss-Lobatto quadrature (2.4), the variational formulation (2.6) can be formulated
as

(wt , vh)h = −ε2(∂x
hw, ∂xvh) + (N (w), vh)h + E(vh), ∀vh ∈ V k
h , (2.7)


h : C(�̄) → V k
h denotes the Lagrange interpolation operator at the Gauss-Lobatto

points and E(vh) represents both quadrature and interpolation errors satisfying [34]

|E(vh)| ≤ C(‖∂tw‖H2k + ‖w‖Hk+1(�) + ‖N (w)‖H2k (�))(‖vh‖h + ‖∂xvh‖L2(�))h
k .

The spatially semi-discretemass-lumpedfinite elementmethod for (2.1) in 1D, derived
using (2.7) and (2.5), is to find wh ∈ L2((0, T ]; V k

h ) such that

(wh,t , vh)h = −ε2(∂xwh, ∂xvh)h + (N (wh), vh)h, ∀vh ∈ V k
h , (2.8a)

(wh(x, 0), vh) = (w0, vh), ∀vh ∈ V k
h . (2.8b)
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2.2 Matrix differential equation in 2D

We extend the implementation using the same setting as one dimension to describe the
proposed spatially semi-discrete scheme on a 2D rectangular domain � = [a, b] ×
[c, d]. To simplify the notation, we denote

m = Mk + 1, n = Nk + 1. (2.9)

Let a = x1 < x2 < · · · < xm = b represent the Gauss-Lobatto points on the interval
�x = [a, b], where xik+1, i = 0, . . . , M , are the nodal points. The uniform mesh
size in the x-direction is hx = xik+1 − x(i−1)k+1 = (b − a)/M for i = 1, . . . , M .
Similarly, let c = y1 < y2 < · · · < yn = d be theGauss-Lobatto points on the interval
�y = [c, d], where y jk+1, j = 0, . . . , N , are the nodal points. The uniformmesh size
in the y-direction is hy = y jk+1 − y( j−1)k+1 = (d − c)/N for j = 1, . . . , N . The
domain � = �x ×�y is now divided into M × N subrectangles, collectively denoted
by by K, using the grid points (xik+1, y jk+1), with 0 ≤ i ≤ M and 0 ≤ j ≤ N . The
mesh size of the partitionK is given by h = max{hx , hy}. We define the finite element
method space in each direction as:

V k
x,h =

{
φ ∈ H1(�x ) : φ|�x,i ∈ P

k, i = 1, ..., M
}

,

V k
y,h =

{
ψ ∈ H1(�y) : ψ |�y, j ∈ P

k, j = 1, ..., N
}

,

where �x,i = [x(i−1)k+1, xik+1] and �y, j = [y( j−1)k+1, y jk+1]. The H1-conforming
tensor-product finite element space for � is given by

Qk
h = V k

x,h ⊗ V k
y,h = {v ∈ H1(�) : v|K ∈ Qk, ∀K ∈ K}.

where Qk be space of polynomials in the variables x, y with real coefficients, and of
degree at most k in each direction on K . Similar to the 1D case, the L2 inner product
in 2D is approximated using the tensor product of the 1D Gauss-Lobatto quadrature,
i.e., note that both f and g are separable functions, say f (x, y) = f1(x) f2(y) and
g(x, y) = g1(x)g2(y), then the 2D L2 inner product reduces to

( f , g)h = ( f1, g1)h ( f2, g2)h,

where each one-dimensional inner product (·, ·)h is defined as in (2.4).With thisGauss-
Lobatto quadrature approximation, the 2D spatially semi-discrete mass-lumped finite
element method for (2.2) is to find wh ∈ L2((0, T ]; Qk

h) such that

(wh,t , vh)h = −ε2(∇wh,∇vh)h + (N (wh), vh)h, ∀vh ∈ Qk
h, (2.10a)

(wh |t=0, vh)h = (w0, vh)h, ∀vh ∈ Qk
h . (2.10b)

Let {φi (x)}mi=1 and {ψ j (y)}ni=1 be basis functions for the finite elements spaces in
the x- and y- directions, respectively. For any 1 ≤ p ≤ m, 1 ≤ q ≤ n, let xp and yq
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represent the corresponding Gauss-Lobatto quadrature points. Then it follows

φi (xp) = δi p, ψ j (yq) = δ jq , (2.11)

where δi j is Kronecker delta function. Moreover, for any s > 0, it holds

(φi (xp))
s = φi (xp) = δi p, and (ψ j (yq))

s = ψ j (yq) = δ jq . (2.12)

Denoted by


(x) = [φ1(x), φ2(x), · · · , φm(x)]
 and �(y) = [ψ1(y), ψ2(y), · · · , ψn(y)]
.

(2.13)
Then we can define the lumped mass matrices

Mx = (
(x),
(x)
)�x = [(φi , φ j )h]m×m,

My = (�(y),�(y)
)�y = [(ψi , ψ j )h]n×n, (2.14)

which are sparse and diagonal owing to the orthogonal property (2.11). We can simi-
larly introduce the stiff matrices

Ax = (∂x
(x), ∂x
(x)
)�x = [(∂xφi , ∂xφ j )h]m×m,

Ay = (∂y
(y), ∂y
(y)
)�y = [(∂yψi , ∂yψ j )h]n×n,
(2.15)

which are sparse, symmetric, and banded with a bandwidth 2k + 1.
Given a function wh ∈ Qk

h , its expansion in terms of these bases can be written as:

wh =
m∑
i=1

n∑
j=1

Wi, j (t)φi (x)ψ j (y) = 
(x)
W (t)�(y), (2.16)

The matrix W = [Wi, j ] ∈ R
m×n is called the coefficient matrix of wh , with respect

to the bases {φi (x)}mi=1 and {ψ j (y)}ni=1.

Definition 2.1 Given matrices A, B ∈ R
m×n with entries Ai j and Bi j , their Frobe-

nius inner product is defined as (A, B)F = tr(A
B) = ∑m
i=1

∑n
j=1 Ai j Bi j . The

Frobenius norm of A is ‖A‖F = √
(A, A)F. The M-weighted Frobenius inner prod-

uct is (A, B)M = (Mx AMy, B)F with Mx and My given in (2.14). The M-weighted
Frobenius norm of A is ‖A‖M := √

(A, A)M.

Definition 2.2 Given matrices A, B ∈ R
m×n with entries Ai j and Bi j , the Hadamard

product is defined as

A ∗ B ∈ R
m×n, with entries (A ∗ B)i j = Ai j Bi j .
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For any integer s ≥ 1, the Hadamard power A◦s ∈ R
m×n is defined as

A◦s = A ∗ A ∗ · · · ∗ A︸ ︷︷ ︸
s times

, with entries (A◦s)i j = As
i j .

Additionally, for C ∈ R
m×n , the distributive property of the Hadamard product holds:

A ∗ (B + C) = A ∗ B + A ∗ C .

Then the following result holds.

Lemma 2.1 For any zh, wh ∈ Qk
h, let Z ,W ∈ R

m×n be their coefficient matrices,
respectively. Then,

(zh, wh)h = (Mx ZMy,W )F = (Z ,W )M, (2.17)

and for any integer s > 0,

(zsh, wh)h = (Mx Z
◦sMy,W )F = (Z◦s,W )M. (2.18)

Moreover,

(∇zh,∇wh)h =(Ax ZMy + Mx Z A

y ,W )F = −(Lx Z + ZL


y ,W )M, (2.19)

where the matrices Lx = −M−1
x Ax ∈ R

m×m, Ly = −M−1
y Ay ∈ R

n×n.

Proof Note that zh = 
(x)
Z�(y), wh = 
(x)
W�(y). Then,

(zh, wh)h =
⎛
⎝ m∑

i=1

n∑
j=1

Zi jφi (x)ψ j (y),
m∑

ν=1

n∑
l=1

Wνlφk(x)ψl(y)

⎞
⎠

h

=
∑
i jνl

Zi jWνl(φi , φν)h(ψ j , ψl)h

=
∑
νl

(Mx ZM


y )νlWνl = (Mx ZM



y ,W )F = (Mx ZMy,W )F.

(2.20)
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where Mx and My are defined by (2.14). For any 1 ≤ p ≤ m, 1 ≤ q ≤ n, let xp and
yq represent the Gauss-Lobatto quadrature points in x- and y- directions, respectively,

(zsh , wh)h =
⎛
⎝

⎛
⎝ m∑
i=1

n∑
j=1

Zi jφi (x)ψ j (y)

⎞
⎠
s

,

m∑
ν=1

n∑
l=1

Wνlφν(x)ψl (y)

⎞
⎠
h

=
m∑
p=1

n∑
q=1

wpwq

⎛
⎝ m∑
i=1

n∑
j=1

Zi jφi (xp)ψ j (yq )

⎞
⎠
s m∑

ν=1

n∑
l=1

Wνlφν(xp)ψl (yq )

=
m∑
p=1

n∑
q=1

wpwq

m∑
i=1

n∑
j=1

Zs
i j (φi (xp))

s(ψ j (yq ))s
m∑

ν=1

n∑
l=1

Wνlφν(xp)ψl (yq )

=
m∑
p=1

n∑
q=1

wpwq

m∑
i=1

n∑
j=1

Zs
i jφi (xp)ψ j (yq )

m∑
ν=1

n∑
l=1

Wνlφν(xp)ψl (yq )

=
⎛
⎝ m∑
i=1

n∑
j=1

Zs
i jφi (x)ψ j (y),

m∑
ν=1

n∑
l=1

Wνlφν(x)ψl (y)

⎞
⎠
h

= (Mx Z
◦sMy,W )F = (Z◦s ,W )M,

where (2.12) has been applied in the third and fourth equalities. Similarly,

(∇zh,∇wh)h =
⎛
⎝∇

⎛
⎝ m∑

i=1

n∑
j=1

Zi jφi (x)ψ j (y)

⎞
⎠ ,∇

(
m∑

ν=1

n∑
l=1

Wνlφν(x)ψl(y)

)⎞
⎠

h

=
∑
i jνl

Zi jWνl(∂xφi , ∂xφν)h(ψ j , ψl)h

+
∑
i jνl

Zi jWνl(∂yψ j , ∂yψl)h(φi , φν)h

= (
Ax ZMy,W

)
F +

(
Mx Z A


y ,W
)
F
.

where Ax and Ay are defined by (2.15). ��

We introduce the coefficient matrix associated with the function 1 ∈ Qk
h , which is

the all-ones matrix I = qmq

n ∈ R

m×n , where each entry is equal to 1. Here, qm ∈ R
m

and qn ∈ R
n are all-ones vectors.

Corollary 2.1 For any wh, vh ∈ Qk
h, let W , V ∈ R

m×n be their coefficient matrices.
Then,

(N (wh), vh)h = (N (W ), V )M, (2.21)
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where the nonlinear matrix operator

N (W ) := W − W ◦3, (for (1.1)), (2.22a)

N (W ) := W − W ◦3 − 1

|�| (W − W ◦3, I), (for (1.2) with RSLM),

(2.22b)

N (W ) := W − W ◦3 − (W − W ◦3, I)M
((I − W ◦2), I)M

(I − W ◦2), (for (1.2) with BBLM),

(2.22c)

with I ∈ R
m×n denoting the all-ones matrix.

Moreover, the conservative AC equation (1.2) with RSLM and BBLM holds

(N (wh), 1)h = (N (W ), I)M = 0. (2.23)

By Lemma 2.1 and Corollary 2.1, we have the following result.

Corollary 2.2 Let W ∈ R
m×n be the coefficient matrix of the finite element solution

wh ∈ Qk
h, and V ∈ R

m×n be the coefficient matrix of any function vh ∈ Qk
h. Then,

the semi-discrete (2.10) is equivalent to the following problem: Find W (t) ∈ R
m×n

such that

(∂tW (t), V )M = (L(W (t)), V )M + (N (W (t)), V )M. (2.24a)

W (t0) = W0, (2.24b)

where W0 ∈ R
m×n is the coefficient matrix of wh(x, y, 0) in (2.10b). Here, the linear

term L(W ) = ε2(LxW +WL

y ) and the nonlinear termN (W (t)) is given by (2.22).

By the arbitrariness of V in (2.24), the 2D semi-discrete finite element scheme
(2.10) can be rewritten as the matrix differential equation

∂tW = L(W (t)) + N (W (t)),

W (t0) = W0.
(2.25)

2.3 Second-order FR-MLFEM

Before presenting the dynamical low-rank approximation for solving the matrix dif-
ferential equation (2.25), we introduce a second order full-rank mass-lumped finite
element method (FR-MLFEM).

For n ≥ 0, let wn
h = wh(x, y, tn) ∈ Qk

h be an approximation of w(x, y, tn), where
tn = nτ and τ > 0 is a specified time step. We further denote the coefficient matrix
of wn

h by Wn ∈ R
m×n , namely, wn

h = 
(x)
Wn�(y).
Given wn

h or its coefficient matrix Wn
h , to design a second-order numerical inte-

grator that computes Wn+1 from the nonlinear matrix differential equation (2.25), we
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consider splitting the matrix equation in (2.25) into two sub-equations associated with
its linear and nonlinear terms,

Xt = L(X), (2.26a)

Zt = N (Z). (2.26b)

We first solve the linear equation (2.26a). For any integer κ > 0 and matrix Z ∈
R

κ×κ , the matrix exponential is defined by

eZ :=
∞∑
l=0

Zl

l! = Iκ +
∞∑
l=1

Zl

l! ∈ R
κ×κ .

Here and throughout what follows, Iκ represents the identity matrix of dimension κ .
For any matrix W ∈ R

m×n and s ∈ R, we define the operator esL by

esLW := esLx WesL


y ,

where Lx and Ly are defined in (2.17). It can be verified that the inverse operator of
esL is given by e−sL, namely,

esLe−sLW = e−sLesLW = e−sLx esLx WesL


y e−sL


y = W .

The linear equation (2.26a), which a linear ordinary differential equation in matrix
form, could be solved analytically, and the solution is given by

Xn+1 = SLτ Xn = eε2τLXn. (2.27)

Next, for the nonlinear problem (2.26b), we use the explicit 2-stage strong stability
preserving Runge-Kutta (SSP-RK2) to approximate the solution at tn+1 with the initial
condition Zn by ⎧⎨

⎩
Zn,1 = Zn + τN (Zn),

Zn+1 = Zn + τ

2
N (Zn) + τ

2
N (Zn,1),

(2.28)

which can be represented in an abstract form as:

Zn+1 = SNτ Zn. (2.29)

The FR-MLFEM for (2.25) formulated in matrix form proceeds as follows: Given
Wn ∈ R

m×n , we find Wn+1 ∈ R
m×n using a second-order Strang splitting approach,

relying on the solvers outlined in (2.27) and (2.29),
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Wn,1 = e
τ
2 ε2LWn,

Wn,2 = Wn,1 + τN (Wn,1),

Wn,3 = 1

2
Wn,1 + 1

2
Wn,2 + 1

2
τN (Wn,2),

Wn+1 = e
τ
2 ε2LWn,3,

(2.30)

which can be written in the abstract form:

Wn+1 = SLτ
2

◦ SNτ ◦ SLτ
2
Wn. (2.31)

The FR-MLFEM (2.30) or (2.31) can be reformulated in the finite element form:
Given wn

h = 
(x)
Wn�(y) ∈ Qk
h , we find wn+1

h = 
(x)
Wn+1�(y) ∈ Qk
h

following

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w
n,1
h = e

τ
2 ε2Lhwn

h ,

(w
n,2
h , vh)h = (w

n,1
h , vh)h + τ(N (w

n,1
h ), vh)h, ∀vh ∈ Qk

h,

(w
n,3
h , vh)h = 1

2
(w

n,1
h , vh)h + 1

2
(w

n,2
h + τ

2
N (w

n,2
h ), vh)h, ∀vh ∈ Qk

h,

wn+1
h = e

τ
2 ε2Lhw

n,3
h ,

(2.32)
where e

τ
2 ε2Lhwh = 
(x)
e τ

2 ε2LW�(y), and w
n,l
h = 
(x)
Wn,l�(y) ∈ Qk

h for
l = 1, 2, 3.

Remark 2.1 Wenote that the nonlinear problem (2.28) has a computational complexity
ofO(mn), due to its explicit formulation. However, the computational cost of the FR-
MLFEM scheme (2.31) or (2.32) is dominated by the two linear steps, resulting in a
total complexity of O((m2 + n2)min{m, n}) floating-point operations.

To present the main properties of the solution obtained from the system (2.27), we
introduce the following result.

Lemma 2.2 For any τ > 0, it holds

(eτε2LZ , I)M = (Z , I)M, ∀Z ∈ R
m×n .

The proof of Lemma 2.2 is presented in Appendix A1. Then, we have the following
results.

Lemma 2.3 Let Wn ∈ R
m×n be the solution to the system (2.30) corresponding to

the conservative AC equation, and wn
h = 
(x)
Wn�(y) ∈ Qk

h be the finite element
solution. Then the solution conserves the mass

(wn
h , 1)h = (Wn, I)M = (W0, I)M = (w0

h, 1)h .
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Proof We prove this by mathematical induction. Assume that (wn
h , 1)h = (w0

h, 1)h .
Next, we take the M-weighted Frobenius inner product on both sides of (2.30) with I.
Using (2.23) and Lemma 2.2 yield

(wn+1
h , 1)h = (Wn+1, I)M = (e

τ
2 ε2LWn,3, I)M = (Wn,3, I)M

= 1

2
(Wn,1, I)M + 1

2
(Wn,2, I)M + 1

2
τ(N (Wn,2), I)M

= (Wn,1, I)M + 1

2
τ(N (Wn,1), I)M

= (Wn,1, I)M = (e
τ
2 ε2LWn, I)M = (Wn, I)M = (wn

h , 1)h .

This completes the proof. ��
Similar to [36, 37], we introduce an O(τ ) modification to the original energy (1.5),

leading to the following modified energy

Ẽn = 1

2τ
((e−τε2Lh − 1)wn,1

h , w
n,1
h )h + (G(w

n,1
h ), 1)h, (2.33)

where G(w
n,1
h ) = F(0) + ∫ w

n,1
h

0 g(s) ds with

g(s) = −1

2
N (s) − 1

2
N (s + τN (s)). (2.34)

We assume that there exists a constant Cg such that

|g′(s)| ≤ Cg.

More discussions on the bound Cg for different types of AC equations can be found
in [36, 37, 48].

Lemma 2.4 For both the classical AC equation (1.1) and the conservative AC equation
(1.2), if the time step τ satisfies 0 < τ ≤ 1/Cg, the solution of system (2.27) or (2.32)
satisfies the following energy law

Ẽn+1 ≤ Ẽn.

The proof of Lemma 2.4 is presented in Appendix A2.

3 Dynamical low-rankmass-lumped finite element method

Let Mr ⊂ R
m×n be the manifold of rank-r matrices (r ≤ min{m, n}). For conve-

nience, let Z ∈ R
m×n represent the coefficient matrix of zh ∈ Qk

h . In the following,
we use script letters to denote low-rank matrix approximations (e.g., Z represents the
low-rank approximation of Z ). Similar to the full-rank strategy, we continue to use the
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spitting (2.26) to solve the matrix differential equation (2.25) in the low-rank approx-
imation. We begin with the low-rank approximation for the linear matrix differential
equation (2.26a).

3.1 An exact low-rank integrator for the linear problem (2.26a)

Given τ > 0 and a rank-r approximation Xn = UnSnV

n at tn with the factors

Un ∈ R
m×r and Vn ∈ R

n×r satisfying

U

n MxUn = V


n MyVn = Ir ,

then the linear matrix differential equation (2.26a) at tn+1 = tn + τ can be solved
analytically by (2.27) as the rank-r matrix

Xn+1 = eτε2LxXne
τε2L


y = eτε2LxUnSnV


n eτε2L


y = Un+1Sn+1V


n+1, (3.1)

where the last equality is obtained by Algorithm 1, and

U

n+1MxUn+1 = V


n+1MyVn+1 = Ir . (3.2)

Algorithm 1 An exact low-rank integrator to the linear matrix differential equation
(2.26a).
Input: Un, Sn, Vn, ε, τ , Mx , My .
Output: Un+1, Sn+1, Vn+1.

• Step 1: Update Un → Un+1 ∈ R
m×r and Vn → Vn+1 ∈ R

n×r in parallel:
perform a generalized QR (GQR) decomposition [55] with weight Mx and My ,
respectively,

[
Un+1, R

] = GQR
(
eτε2LxUn, Mx

)
,[

Vn+1, P
] = GQR

(
eτε2Ly Vn, My

)
,

where Un+1 and Vn+1 satisfy (3.2).
• Step 2: Update Sn → Sn+1 ∈ R

r×r by

Sn+1 = RSnP

. (3.3)

Remark 3.1 The solutions of both the FR-MLFEM scheme (2.31) and Algorithm 1 are
obtained analytically. Therefore, the value of ε in the linear equation (2.26a) does not
impose any restriction on the time step size. For the FR-MLFEM scheme (2.31), the

matrix product e
τ
2 ε2Lx We

τ
2 ε2L


y must be computed sequentially. In contrast, thematrix
products eτε2LxUn and eτε2Ly Vn in Algorithm 1 not only have lower computational
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complexity, but can also be computed in parallel. The overall computational cost of
Algorithm 1 is O((m2 + n2)r).

Remark 3.2 The computational complexity of computing the exponential of anm×m
matrix is O(m3) in the general case [3, 25]. Several fast algorithms have been devel-
oped that reduce the complexity to O(mγ )with 2 < γ ≤ 3 [26]. For more specialized
cases, such as the computation of the matrix exponential for sparse matrices, the com-
plexity is even lower [2]. In AC equation, ε is constant, so the exponential of anm×m
matrix needs to be computed only once, prior to the first time step, in both the FR-
MLFEM scheme (2.31) and Algorithm 1. Thus, its cost does not affect the overall
computational complexity of the proposed algorithms.

Lemma 3.1 For any τ > 0, given low-rank matrix Xn = UnSnV

n at tn, the low-

rank approximation Xn+1 = Un+1Sn+1V

n+1, obtained in (3.1) for the linear matrix

differential equation (2.26a) at tn+1, satisfies (i) the rank of matrix Xn+1 is no more
than that of Xn, and (ii) (Un+1Sn+1V


n+1, I)M = (UnSnV

n , I)M.

Proof (i) follows from (3.3). For (ii), it holds

(Un+1Sn+1V


n+1, I)M = (Un+1(RSnP


)V

n+1, I)M

= (eτε2LxUnSn(eτε2Ly Vn)
, I)M
= (UnSnV



n , I)M,

where we have used Lemma 2.2 for the last equality. ��

3.2 DLRA for nonlinear problem (2.26b)

The Dynamical Low-Rank Approximation (DLRA) is traditionally formulated by
evolving the matrix differential equation through a minimization problem using the
Frobenius norm on the tangent space of Mr at Z [30]. In the following, to maintain
formulation equivalence between the Galerkin equation of the DLRA and the matrix
variational problem (2.24), we introduce aweightedDLRA, inwhich theminimization
problem is formulated using the M-weighted Frobenius norm in Definition 2.1. A
similar weighted DLRA was investigated in [55].

Definition 3.1 The weighted DLRA to (2.26b) is defined as the solution Z ∈ Mr

(where Z is a rank-r approximation of Z ) to the differential equation

∂tZ = argmin
δZ∈TZMr

‖δZ − N (Z)‖M, (3.4)

whereN (Z) is the nonlinear termdefined in (2.26b),with the initial conditionZ(tn) =
Zn being a rank-r approximation of Zn. TZMr is the tangent space ofMr at Z .

Assume that matrix Z ∈ Mr has a rank-r decomposition

Z = USV
, where U
MxU = V
MyV = Ir , (3.5)
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withU ∈ R
m×r , S ∈ R

r×rand V ∈ R
n×r . Then the tangent space ofMr atZ is given

by [30]:

TZMr = {δUSV
 +UδSV
 +USδV
 : U
MxδU = 0, V
MyδV = 0}, (3.6)

where δU ∈ R
m×r , δS ∈ R

r×rand δV ∈ R
n×r . Under the gauge conditions

U
MxδU = V
MyδV = 0, each matrix δZ ∈ TZMr has a unique decomposi-
tion

δZ = δUSV
 +UδSV
 +USδV
 = P⊥
U MxδZMyPV + PUMxδZMyPV

+ PUMxδZ
MyP
⊥
V , (3.7)

where

δU = P⊥
U MxδZMyV S−1, δS

= U
MxδZMyV , and δV = P⊥
V MyδZ
MxUS−
, (3.8)

with the symmetric matrices

PU = UU
, P⊥
U = M−1

x − PU ,

PV = VV
, P⊥
V = M−1

y − PV .
(3.9)

Here, the matrix PUMx (resp. PV My) is the orthogonal projection onto the column
space of U (resp. V ) with respect to the inner product on R

m (resp. Rn) with weight
Mx (resp. My).

Similar to [30, 55], the following results hold.

Proposition 3.1 Suppose the solutionZ = USV
 ∈ Mr satisfies Definition 3.1, with
initial data Z(0) = U0S0V


0 ∈ Mr where U

0 MxU0 = V


0 MyV0 = Ir . Then, the
following formulations are equivalent to the weighed DLRA defined in Definition 3.1.

(i) Galerkin condition: ∂tZ ∈ TZMr is the solution of the Galerkin condition

(∂tZ − N (Z), δZ)M = 0, ∀δZ ∈ TZMr ,

Z(0) = U0S0V


0 .

(3.10)

(ii) Equations of motion: the factors of Z satisfy

U̇ = P⊥
U MxN (Z)MyV S−1, Ṡ = U
MxN (Z)MyV ,

V̇ = P⊥
V MyN (Z)
MxUS−
,

U (0) = U0, S(0) = S0, V (0) = V0,

(3.11)

where PU and PV are defined in (3.9).
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(iii) Coupled ordinary differential equations (ODEs), referred to as the KLS system:
the matrices K = US ∈ R

m×r , L = V S
 ∈ R
n×r , and S ∈ R

r×r satisfy

K̇ = N (KV
)MyV , L̇ = N (UL
)
MxU , Ṡ = U
MxN (USV
)MyV ,

K (0) = U0S0, L(0) = V0S


0 , S(0) = S0.

(3.12)

The proof of Proposition 3.1 is similar to that of [55, Proposition 3.5].

3.3 Strategies for the nonlinear and nonlocal terms

To integrate the differential equation (3.4) in DLRA, or its equivalent formulations
(3.10)-(3.12), for the nonlinear matrix differential equation (2.26b), it is essential to
adopt efficient strategies for treating both the nonlinear terms and potential nonlocal
terms appearing in N (W ). In particular, the computational cost in (3.12) arises from
evaluating the matrix products on the right hand side terms of the system:

N (KV
)MyV ,N (UL
)
MxU , and U
MxN (USV
)MyV . (3.13)

Additional overhead may result from nonlocal terms, (W ◦s, I)M, s = 2, 3, as shown
in (2.22).

A direct strategy (Strategy 1) is to recover the m × n matrix W in the nonlinear
operatorN , and then compute the matrix products and inner products. The total com-
putational complexity to compute the matrix products is O(mnr). Next, we consider
the low-rank strategy for the nonlocal term (W ◦s, I)M, s = 2, 3 in (2.22c). Recall
that the all-ones matrix I = qmq


n ∈ R
m×n , where qm ∈ R

m and qn ∈ R
n are

all-ones vectors. We can reduce its computational complexity by using the following
reformulation:

(W ◦s, I)M = (MxW
◦sMy, qmq



n )F = (MxW

◦sMyqn, qm)F, s = 2, 3. (3.14)

Then the computational complexity in computing these nonlocal terms is O(mn).
An alternative strategy (Strategy 2) is to evaluate the matrix products and nonlocal

terms without recovering the m × n matrix W explicitly. The coupled ODE system
(3.12) implies that we can compute the product involving N (W ) without explicitly
computingN (W ) itself. For example, in thedifferential equationof K ,we can compute
the productN (W )MyV for any V ∈ R

n×r without explicitly computing the elements
of W . We only consider its nonlinear component W ◦3MyV for simplicity. Recall that
K = US ∈ R

m×r . Then, it holds

W = USV
 = KV
 =
r∑

i=1

KiV


i , (3.15)

where Ki , Vi are the i-th column of K and V , respectively. In addition to the properties
in Definition 2.2, the following property holds for the Hadamard product,
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Table 1 Computational complexity of the nonlinear and nonlocal terms

Strategies Criteria Nonlinear terms in (3.13) (W ◦s , I)M

Strategy 1 r ≥ 3√min{m, n} O(mnr) O(mn)

Strategy 2 r < 3√min{m, n} O((m + n)r4) O((m + n)rs )

(KiV


i ) ∗ (K jV



j ) = (Ki ∗ K j )(Vi ∗ Vj )


, for 1 ≤ i, j ≤ r .

Hence, the cubic nonlinearity which appears in the nonlinear term and V ∈ R
n×r it

holds:

(W ◦3)MyV =
⎛
⎝

(
r∑

i=1

KiV


i

)
∗
⎛
⎝ r∑

j=1

K jV


j

⎞
⎠ ∗

(
r∑

l=1

KlV


l

)⎞
⎠ MyV

=
⎛
⎝ r∑

i, j,l=1

(Ki ∗ K j ∗ Kl)
(
Vi ∗ Vj ∗ Vl

)
⎞
⎠ MyV

=
r∑

i, j,l=1

(Ki ∗ K j ∗ Kl)
((
Vi ∗ Vj ∗ Vl

)

MyV

)
.

(3.16)

Therefore, the computation of (W ◦3)MyV , when implemented following (3.16),
results in a computational complexity of O((m + n)r4). Analogously, the compu-
tational complexity of (W ◦3)
MxU withU ∈ R

m×r is alsoO((m+n)r4). By (3.16),
the dominant term in the product U
MxN (USV
)MyV has the following reformu-
lation

UT Mx (W
◦3)MyV =

r∑
i, j,l=1

(
UT Mx (Ki ∗ K j ∗ Kl)

) ((
Vi ∗ Vj ∗ Vl

)

MyV

)
,

(3.17)
which has the computational complexity O((m + n)r4).

Since Mx is a diagonal matrix, the computational complexity of computing
MxW ◦3Myqn , which dominates the computational complexity of (W ◦3, I)M, is equiv-
alent to that of computing W ◦3Myqn . The decomposition of W ◦3Myqn follows
the same as (3.16), with V replaced by qn , and its computational complexity is
O((m+n)r3), which is also the computational complexity of (W ◦3, I)M. Similarly, the
computational complexity for the nonlocal term (W ◦2, I)M in (2.22c) isO((m+n)r2).

We summarize the computational complexity of the nonlinear and nonlocal terms
for Strategy 1 and Strategy 2 in Table 1. In typical applications, the relation r2 ≤
min{m, n} usually holds. Based on this, we adopt the following guideline for selecting
the strategy: if r < 3

√
min{m, n}, we choose Strategy 2; otherwise, we choose Strat-

egy 1. Following this principle, the computational complexity for solving the nonlinear
problem (2.26b) is bounded by O(mnr).
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3.4 Second-order integrator

Similar to the Strang splitting approach for the FR-MLFEM (2.31), we propose a
second-order low-rank integrator for the matrix differential equation (2.25) by solving
the split linear and nonlinear matrix differential equations (2.26a) and (2.26b). For the
linear component (2.26a), we use the exact low-rank integrator in Algorithm 1.

For the nonlinear component (2.26b), we employ the augmented BUG integrator
[5, 6] for the KLS system (3.12), an equivalent formulation of DLRA to the nonlinear
matrix differential equation (2.26b). This method extends the bases used in the S-
step of the BUG integrator [6, 7] to eliminate unwanted projection errors. The BUG
integrator, viewed as a splitting method, is applied to the KLS system (3.12), where
the K and L equations are updated in parallel, followed by an update of the S equation.

The second-order augmented BUG integrator [5] builds upon the first-order aug-
mented BUG integrator [8]. We start by outlining the key aspects of the first-order
integrator for the matrix differential equation (2.26b). Given a factored rank-r matrix
Zn = UnSnV


n at tn, with factors Un ∈ R
m×r and Vn ∈ R

n×r satisfying

U

n MxUn = V


n MyVn = Ir ,

the one-step first-order augmented BUG integrator gives a low-rank approximation at
the next time step tn+1 = tn + τ , namely,

Zn+1 = Un+1Sn+1V


n+1, (3.18)

where the updated bases Un+1 ∈ R
m×r̂ and Vn+1 ∈ R

n×r̂ satisfy

U

n+1MxUn+1 = V


n+1MyVn+1 = Ir̂ , where r̂ ≤ 2r .

The specifics of the first-order augmented BUG integrator are outlined in Algorithm
2.

Algorithm 2 One-step first-order augmented BUG integrator for (2.26b).
Input: Un, Sn, Vn, τ , Mx , My .
Output: Un+1, Sn+1, Vn+1.

• Step 1: Update Un → Un+1 ∈ R
m×r̂ and Vn → Vn+1 ∈ R

n×r̂ in parallel, with
(r̂ ≤ 2r):

– K-step:

• Solve Kn+1 from the m × r matrix equation

Kn+1 − Kn

τ
= N (KnV



n )MyVn, Kn = UnSn. (3.19)

– L-step:
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• Solve Ln+1 from the n × r matrix equation

Ln+1 − Ln

τ
= N (UnL



n )
MxUn, Ln = VnS



n . (3.20)

– Update the basis:

• Set K̃n+1 = [Kn+1,Un] and L̃n+1 = [Ln+1, Vn].
• Compute Un+1 ∈ R

m×r̂ , Vn+1 ∈ R
n×r̂ following generalizing QR

(GQR) decomposition in [55],

[Un+1,∼] = GQR(K̃n+1, Mx ), [Vn+1,∼] = GQR(L̃n+1, My).

• Compute the matrix M = U

n+1MxUn, and N = V


n+1MyVn.

• Step 2: Update Sn → Sn+1 ∈ R
r̂×r̂ :

– S-step:

• Set Sn,∗ = MSnN
.

• Solve the r̂ × r̂ matrix equation

Sn+1 − Sn,∗
τ

= U

n+1MxN (Un+1Sn,∗V


n+1)MyVn+1. (3.21)

Remark 3.3 Since the first-order augmented BUG integrator in Algorithm 2 is a com-
ponent of the second-order integrator for the nonlinear matrix differential equation
(2.26b), the truncation step is deferred to the main algorithm for the matrix differen-
tial equation (2.26b).

With the preparation above, we present the second-order integrator for the matrix
differential equations in (2.26). The exact low-rank integrator from Algorithm 1 is
employed for the linear matrix differential equation (2.26a), while the second-order
augmented BUG integrator [5] is applied to solve the nonlinear matrix differential
equation (2.26b). In particular, we will use SSP-RK2 to solve the matrix equation in
the S-step. This approach utilizes a second-order Strang splitting method, similar to
(2.31) or (2.30), as implemented in FR-MLFEM, to integrate the linear and nonlinear
integrators. The details are outlined in Algorithm 3.

Algorithm 3 A second-order integrator for the split matrix differential equations in
(2.26).
Input: Un, Sn, Vn, τ , Mx , My .
Output: Un+1, Sn+1, Vn+1.

• Linear Step: Perform Algorithm 1 with a time step τ
2 and initial values

Un, Sn, Vn to obtain

Wn,1 = Un,1Sn,1V


n,1.
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• Nonlinear Step:

– Trapezoidal Approximation:

• PerformAlgorithm 2with a time step τ and initial valuesUn,1, Sn,1, Vn,1
to obtain the approximation of rank r̂ = 2r ,

Wn,2 = Un,2Sn,2V


n,2. (3.22)

– Galerkin Step:

• Assemble the augmented matrices U and V,

U = [qm,Un,1, τN (Wn,1)MyVn,1, τN (Wn,2)MyVn,2],
V = [qn, Vn,1, τN (Wn,1)


MxUn,1, τN (Wn,2)

MxUn,2].

• Compute the new bases:

[Un,3,∼] = GQR(U, Mx ), [V n,3,∼] = GQR(V, My). (3.23)

• Compute the r̄ × r matrices M = U


n,3MxUn,1 and N = V



n,3MyVn,1,

and r̄ × r̄ matrix

Sn,1 = MSn,1N

. (3.24)

• Solve the r̄ × r̄ matrix equations by the SSP-RK2:

Sn,2 = Sn,1 + τU


n,3MxN (Un,3Sn,1V



n,3)MyV n,3, (3.25a)

Sn,3 = 1

2
Sn,1 + 1

2
Sn,2 + τ

2
U



n,3MxN (Un,3Sn,2V



n,3)MyV n,3.

(3.25b)

– Truncation Step:

• Compute the SVD decomposition of Sn,3 = R � P



with � =
diag(σi ).

• Truncate � to Sn,3 with either the original rank r or a new rank r = r̃ ,
determined by prescribed a truncation tolerance η, such that

(
r̄∑

i=r+1

σ 2
i

) 1
2

≤ η. (3.26)

• Set R ∈ R
r̄×r and P ∈ R

r̄×r containing the first r columns of R and P ,
respectively.
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• Set Un,3 = Un,3R ∈ R
m×r and Vn,3 = V n,3P ∈ R

n×r .

• Linear Step: Perform Algorithm 1 with a time step τ
2 and initial values

Un,3, Sn,3, Vn,3
to obtain

Wn+1 = Un+1Sn+1V


n+1.

Remark 3.4 The nonlinear step in Algorithm 3 has a computational complexity of at
most O(mnr). Since the linear steps remain the dominant cost in the second-order
integrator Algorithm 3, the overall computational complexity is O((m2 + n2)r).

Remark 3.5 In practice, the GQR method in Algorithm 2 and Algorithm 3 can be
replaced with the RGQR method ( Algorithm 4), which substantially improves com-
putational efficiency while maintaining accuracy.

Remark 3.6 A first-order integrator can also be proposed by using the Lie-Trotter
splitting [49], which combines Algorithm 1 and Algorithm 2 analogous to Algorithm
3. We omit the details.

3.5 Properties of the dynamical low-rank finite element solution

In this section, we explore the properties of the solution from Algorithm 3. Recall that
script letters denote low-rank matrix approximations (e.g., Z represents the low-rank
approximation of the matrix Z ). From this subsection, we adopt a bold italic font,
such as zh = 
(x)
Z�(y) ∈ Qk

h , to represent the low-rank function associated with
the low-rank matrixZ . First, we defined the following subspaces of the finite element
space Qk

h ,

Qn,k
0 =

{
v | v(x, y) = 
(x)
UnSV



n �(y), ∀S ∈ R

r×r
}

, (3.27a)

Qn,k
1 =

{
v | v(x, y) = 
(x)
Un,1SV



n,1�(y), ∀S ∈ R

r×r
}

, (3.27b)

Q
n,k
3 =

{
v | v(x, y) = 
(x)
Un,3SV



n,3�(y), ∀S ∈ R

r̄×r̄
}

, (3.27c)

Qn,k
3 =

{
v | v(x, y) = 
(x)
Un,3SV



n,3�(y), ∀S ∈ R

r̃×r̃
}

, (3.27d)

where r , r̄ , and r̃ are given in Algorithm 3.

Remark 3.7 We have used the adaptive rank r̃ for S matrix in the subspace Qn,k
3 in

(3.27d), and it can be changed to fixed rank r as stated in Truncation Step in Algorithm
3.

By (3.23) in Algorithm 3, it can be observed that

Qn,k
1 ⊂ Q

n,k
3 . (3.28)
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Similar to the full-rank finite element method, Algorithm 3 provides a second-
order low-rank finite element approximation for the matrix differential equations in
(2.26). Notably, the low-rank finite element formulations in Algorithm 3 are mathe-
matically equivalent to the full-rank finite element scheme (2.32), differing only in
that the approximations are computed in subspaces of the original finite element space.
Specifically, the following statement holds.

Lemma 3.2 Algorithm 3 can be reformulated as the BUG-MLFEM: Given wn
h =


(x)
UnSnV

n 
(y) ∈ Qn,k

0 , we find wn+1
h = 
(x)
Un+1Sn+1V


n+1
(y) ∈
Qn+1,k

0 such that

w
n,1
S = e

τ
2 ε2Lhwn

h (3.29a)

(w
n,2
S

,w2)h = (w
n,1
S ,w2)h + τ(N (w

n,1
S ),w2)h, ∀w2 ∈ Q

n,k
3 , (3.29b)

(w
n,3
S

,w3)h = 1

2
(w

n,1
S ,w3)h + 1

2
(w

n,2
S

,w3)h + τ

2
(N (w

n,2
S

),w3)h, ∀w3 ∈ Q
n,k
3 ,

(3.29c)

wn+1
h = e

τ
2 ε2Lhw

n,3
S . (3.29d)

Here, the operator e
τ
2 ε2Lh is defined in (2.32), and the low-rank finite element approx-

imations
w
n,1
S = 
(x)
Un,1Sn,1V



n,1
(y) ∈ Qn,k

1 ,

w
n,2
S

= 
(x)
Un,3Sn,2V


n,3
(y) ∈ Q

n,k
3 ,

w
n,3
S

= 
(x)
Un,3Sn,3V


n,3
(y) ∈ Q

n,k
3 ,

w
n,3
S = 
(x)
Un,3Sn,3V



n,3
(y) ∈ Qn,k

3 ,

where wn,3
S is the truncated low-rank finite element approximations of wn,3

S
.

Proof It can be verified that the (3.29a) and (3.29d) are equivalent to the two linear
steps in Algorithm 3, respectively. Below, we demonstrate the equivalence for (3.29a);
the proof for (3.29d) follows a similar argument. By Algorithm 1, it holds

w
n,1
S = 
(x)
Un,1Sn,1V



n,1
(y) = 
(x)
Un,1RSnP


V

n,1
(y)

= 
(x)
e
τ
2 ε2LxUnSnV



n e

τ
2 ε2L


y 
(y) = e
τ
2 ε2Lhwn

h .
(3.30)

In this following, we focus on (3.29b) and (3.29c). Let

w
n,1
S

= 
(x)
Un,3Sn,1V


n,3�(y) ∈ Q

n,k
3 ,

be the projection of wn,1
S ∈ Qn,k

1 onto Q
n,k
3 , namely,

(w
n,1
S

,wh)h = (w
n,1
S ,wh)h, ∀wh ∈ Q

n,k
3 ,
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which, by Lemma 2.1, is equivalent to the matrix equation

(
MxUn,3Sn,1V



n,3My,Un,3SV



n,3

)
F

=
(
MxUn,3Sn,1V



n,3My,Un,3SV



n,3

)
F
, ∀S ∈ R

r̄×r̄ . (3.31)

From (3.28), it also holds
w

n,1
S

= w
n,1
S ∈ Q

n,k
3 ,

By Lemma 2.1 and Corollary 2.1, the low-rank finite element formulation (3.29b) is
equivalent to

(
MxUn,3(Sn,2 − Sn,1)V



n,3My,Un,3SV



n,3

)
F

= τ
(
MxN (Un,1Sn,1V



n,1)My,Un,3SV



n,3

)
F
, ∀S ∈ R

r̄×r̄ .

Using (3.31) and the properties of the Frobenius inner product gives

(
Sn,2, S

)
F = (

Sn,1, S
)
F+τ

(
U



n,3MxN (Un,1Sn,1V



n,1)MyV n,3, S

)
F
, ∀S ∈ R

r̄×r̄ .

(3.32)
From (3.23),Un,3U



n,3Mx is the orthogonal projection onto the range ofUn,3, which

by definition equals the range of U. In particular, the columns of Un,1 lie in range of

Ūn,3, and henceUn,3U


n,3MxUn,1 = Un,3M = Un,1. Similarly, V n,3V



n,3MyVn,1 =

V n,3N = Vn,1. Here, M and N were given in Algorithm 3. Therefore, it holds

Un,1Sn,1V


n,1 = Un,3MSn,1N


V

n,3 = Un,3Sn,1V



n,3. (3.33)

Then, (3.32) can be written as

(
Sn,2, S

)
F = (

Sn,1, S
)
F + τ

(
U



n,3MxN (Un,3Sn,1V



n,3)MyVn,3, S

)
F

, ∀S ∈ R
r̄×r̄ ,

which gives (3.25a) by the arbitrariness of S. Similarly, (3.29c) is equivalent to (3.25b).
��

Remark 3.8 In Lemma 3.2, we presented the finite element formulations for the S-
step but omitted those for the K -step and L-step, as the finite element solution for the
S-step is equivalent to the low-rank finite element solution.

Theorem 3.1 Givenwn
h ∈ Qn,k

0 , the BUG-MLFEM solutionwn+1
h ∈ Qn+1,k

0 obtained
from Algorithm 3 for the conservative AC equation (1.2) conserves the mass up to the
truncation the tolerance η specified in (3.26), i.e.,

|(wn+1
h − wn

h , 1)h | = |(Wn+1, I)M − (Wn, I)M|
= |(Un+1Sn+1V



n+1, I)M − (UnSnV



n , I)M| ≤ Cη .
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Proof The matricesUn,1, Sn,1, Vn,1 are obtained from Algorithm 1 with initial values
{Un, Sn, Vn} and the time step τ

2 . Then, by Lemma 3.1, it follows

(Un,1Sn,1V


n,1, I)M = (UnSnVn, I)M. (3.34)

Recall that the all-ones matrix I = qmq

n ∈ R

m×n , where qm ∈ R
m and qn ∈ R

n are

all-ones vectors. Similar to (3.33), Un,3U


n,3Mxqm = qm , and V n,3V



n,3Myqn = qn .

Then, for any matrix W ∈ R
m×n ,

(
Un,3U



n,3MxN (W )MyVn,3V



n,3, I

)
M

=
(
MxUn,3U



n,3MxN (W )MyVn,3V



n,3My, I

)
F

= (
MxN (W )My, I

)
F = (N (W ), I)M .

(3.35)
Therefore,Un,3, Sn,3, V n,3 obtained from Algorithm 3 with initial valuesUn,1, Sn,1,
Vn,1 satisfy

(Un,3Sn,3V


n,3, I)M

= 1

2

(
Un,3

[
Sn,1 + Sn,2 + τU



n,3MxN (Un,3 Sn,2V



n,3)MyVn,3

]
V



n,3, I

)
M

=
(
Un,3 Sn,1V



n,3, I

)
M

+ τ

2

(
N (Un,3 Sn,1V



n,3), I

)
M

+ τ

2

(
N (Un,3 Sn,2V



n,3), I

)
M

=
(
Un,3 U



n,3Un,1Sn,1V



n,1Vn,3 V



n,3, I

)
M

=
(
Un,1Sn,1V



n,1, I

)
M

,

(3.36)
where we have used (2.23). The Truncation step in Algorithm 3 implies

∣∣∣(Un,3Sn,3V


n,3, I)M − (Un,3Sn,3V



n,3, I)M

∣∣∣
≤

∥∥∥Un,3Sn,3V


n,3 −Un,3Sn,3V



n,3

∥∥∥
M

‖I‖M ≤ Cη.
(3.37)

Similar to (3.34), the second linear step implies

(Un+1Sn+1Vn+1, I)M = (Un,3Sn,3V


n,3, I)M,

Therefore, it holds∣∣∣(Un+1Sn+1V


n+1, I)M − (UnSnV



n , I)M

∣∣∣ ≤ Cη.

which implies the conclusion. ��
Remark 3.9 The proposedmethod ismodified to improvemass conservation. In partic-
ular, the inclusion of qm and qn in Algorithm 3 in the basis ensures that the augmented
solution exactly conserves mass. After truncation, however, this property is no longer
strictly satisfied; as implied by Theorem 3.1, the resulting mass error is proportional to
the truncation tolerance at each time step. We also note that this error may accumulate
over time. Addressing the removal of this error will be left for future work.
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To give the discrete energy law for the low-rank solution,we introduce the following
assumptions.

Assumption 3.1 (i)N is Lipschitz-continuous andbounded [15]: for all X ,Y ∈ R
m×n ,

‖N (X) − N (Y )‖M ≤ CN‖X − Y‖M.

(ii) For coefficientmatrixW(t) ∈ Mr̄ to the low rank solutionwh ∈ Q
n,k
3 , it holds that

projection error is more accurate than the tangent-space projection for approximating
N (W) (see [40] Proposition.3)

∥∥∥N (W) −Un,3 U


n,3MxN (W)MyVn,3V



n,3

∥∥∥
M

≤ ∥∥N (W) − PW (N (W))
∥∥
M ≤ μ,

where the bases are given in Algorithm 3 and

μ = sup
[tn,tn+1]

sup
W∈Mr̄

∥∥N (W) − PW (N (W))
∥∥
M .

Then we are ready to state the following modified energy law.

Theorem 3.2 Assume theAssumption3.1 hold.For both the classicalACequation (1.1)
and the conservative AC equation (1.2), if the time step τ satisfies the conditions stated
in Lemma2.4, the BUG-MLFEM solution wn+1

h = 
(x)
Un+1Sn+1V

n+1�(y),

obtained via Algorithm 3 or (3.29), satisfies the following modified energy law

Ẽn+1 ≤ Ẽn − β2 +
(

η

τ
+ (1 + CN τ)μ

2

)
β, (3.38)

where β =
∥∥∥wn+1,1

h − w
n,1
h

∥∥∥
h
, and the modified energy

Ẽn = Ẽ
(
w

n,1
h

)
= 1

2τ

[
(e−τε2Lh − 1)wn,1

h ,w
n,1
h )h

]
+ (G(w

n,1
h ), 1)h, (3.39)

with G being defined in (2.33).

Proof From (3.25), it holds

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Un,3Sn,2V


n,3 = Un,3Sn,1V



n,3 + τUn,3U



n,3MxN (Un,3Sn,1V



n,3)MyV n,3V



n,3.

Un,3Sn,3V


n,3 = 1

2
Un,3Sn,1V



n,3 + 1

2
Un,3Sn,2V



n,3

+ τ

2
Un,3U



n,3MxN (Un,3Sn,2V



n,3)MyV n,3V



n,3.

(3.40)
Based on (3.33), we define

Wn,3 = Un,3Sn,3V


n,3. (3.41)
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and

Wn,2 = Un,3Sn,2V


n,3

= Un,3Sn,1V


n,3 + τUn,3U



n,3MxN (Un,3Sn,1V



n,3)MyV n,3V



n,3

= Un,1Sn,1V


n,1 + τUn,3U



n,3MxN (Un,1Sn,1V



n,1)MyV n,3V



n,3

= Wn,1 + τUn,3U


n,3MxN (Wn,1)MyV n,3V



n,3.

(3.42)

Thus, it can be concluded from (3.40), (3.41) and (3.42):

Wn,3 − Wn,1 = τ

2
UpN (Wn,1)V p + τ

2
UpN (Wn,2)V p, (3.43)

where Up = Un,3U


n,3Mx and V p = V n,3V



n,3My denote the orthogonal projector

on to the range of Un,3 and V n,3, respectively. (3.43) can be reformulated as

1

τ
(Wn,3 − Wn+1,1) + 1

τ
(Wn+1,1 − Wn,1) = 1

2
UpN (Wn,1)Vp + 1

2
UpN (Wn,2)Vp.

(3.44)
The first term of the left side of (3.44), taking M-weighted inner product with

Wn+1,1 − Wn,1, gives

1

τ
(Wn,3 − Wn+1,1,Wn+1,1 − Wn,1)M

= 1

τ
(Wn,3 − Wn,3,Wn+1,1 − Wn,1)M + 1

τ
(Wn,3 − Wn+1,1,Wn+1,1 − Wn,1)M.

(3.45)
By (3.26), the first term on the right hand side of (3.45) implies

1

τ
(Wn,3 − Wn,3,Wn+1,1 − Wn,1)M

≤ 1

τ

∥∥Wn,3 − Wn,3
∥∥
M

∥∥Wn+1,1 − Wn,1
∥∥
M ≤ η

τ

∥∥Wn+1,1 − Wn,1
∥∥
M .

For linear step in Algorithm 3,

Wn,3 = e−τε2LWn+1,1.

Then the second term on the right hand side of (3.45) holds

1

τ
(Wn,3 − Wn+1,1,Wn+1,1 − Wn,1)M

= 1

τ
(e−τε2LWn+1,1 − Wn+1,1,Wn+1,1 − Wn,1)M

= 1

2τ

[
(e−τε2LWn+1,1 − Wn+1,1,Wn+1,1)M − (e−τε2LWn,1 − Wn,1,Wn,1)M
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+ (e−τε2L(Wn+1,1 − Wn,1),Wn+1,1 − Wn,1)M − ∥∥Wn+1,1 − Wn,1
∥∥2
M

]
,

(3.46)

where we use the identity

(A − B, 2A)M = ‖A‖2M − ‖B‖2M + ‖A − B‖2M .

The right side of (3.44), taking M-weighted inner product with Wn+1,1 − Wn,1,
gives

1

2

(
UpN (Wn,1)Vp +UpN (Wn,2)Vp,Wn+1,1 − Wn,1

)
M

= 1

2

(
UpN (Wn,1)Vp +UpN (Wn,2)Vp

−
(
N (Wn,1) + N (Un,3Sn,2V



n,3)

)
,Wn+1,1 − Wn,1

)
M

+ 1

2

((
N (Wn,1) + N (Un,3Sn,2V



n,3)

)
,Wn+1,1 − Wn,1

)
M

≤ 1

2
(N (Wn,1) + N (Un,3Sn,2V



n,3),Wn+1,1 − Wn,1)M + μ

2

∥∥Wn+1,1 − Wn,1
∥∥
M

≤ 1

2
(N (Wn,1) + N (Wn,1 + τN (Wn,1)),Wn+1,1 − Wn,1)M + μ

2

∥∥Wn+1,1 − Wn,1
∥∥
M

+ 1

2
(N (Un,3Sn,2V



n,3) − N (Wn,1 + τN (Wn,1)),Wn+1,1 − Wn,1)M.

≤ 1

2
(N (Wn,1) + N (Wn,1 + τN (Wn,1)),Wn+1,1 − Wn,1)M + μ

2

∥∥Wn+1,1 − Wn,1
∥∥
M

+ τCN

2

∥∥∥Un,3U
T
n,3MxN (Wn,1)MyVn,3V

T
n,3 − N (Wn,1)

∥∥∥
M

∥∥Wn+1,1 − Wn,1
∥∥
M

≤ −(g(Wn,1),Wn+1,1 − Wn,1)M + μτCN

2

∥∥Wn+1,1 − Wn,1
∥∥
M + μ

2

∥∥Wn+1,1 − Wn,1
∥∥
M

≤ −(g(Wn,1),Wn+1,1 − Wn,1)M + (1 + CN τ)μ

2

∥∥Wn+1,1 − Wn,1
∥∥
M ,

where g is defined in (2.34), and Assumption 3.1 has been applied in the first, third,
and fourth inequalities.

Combining the results above, we obtain

Ẽ(w
n+1,1
h ) − Ẽ(w

n,1
h )

= 1

2τ

[
(e−τLh − 1)wn+1,1

h ,w
n+1,1
h )h − (e−τLh − 1)wn,1

h ,w
n,1
h )h

+(G(w
n+1,1
h ), 1)h − G(w

n,1
h ), 1)h

]
≤ −

(
1

2τ
− g′(ξ)

2

)∥∥∥wn+1,1
h − w

n,1
h

∥∥∥2
h

+ η

τ

∥∥∥wn+1,1
h

−w
n,1
h

∥∥∥
h

+ (1 + CN τ)μ

2

∥∥∥wn+1,1
h − w

n,1
h

∥∥∥
h
, (3.47)

which yields the energy dissipation law (3.38). ��
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Remark 3.10 The energy dissipation law (3.38) for the BUG-MLFEM solution has an
additional term, ( η

τ
+ (1+Cτ)μ)β − β2, which accounts for the truncation error and

projection error in Assumption 3.1. To ensure that Algorithm 3 achieves second-order
accuracy in time, it is reasonable to assume

η = O(τ 2), and β ∼ ‖wn+1
h − wn

h‖h = O(τ (τ 2 + hk+1)).

Under these assumptions, (3.38) reduces to

Ẽn+1 ≤ Ẽn + O(τ (τ 2 + hk+1)),

which implies that the last two terms in (3.38) are higher-order error terms. Conse-
quently, the energy dissipation property is preserved up to an error significantly smaller
than the overall approximation accuracy.

Remark 3.11 In algorithm implementation, the choice of the truncation threshold η is
flexible. In this paper, we set η = α‖�‖2, with an approximate α to retain sufficient
accuracy of Sn,3. Numerical experiments demonstrate that this choice allows the low-
rank solution to preserve the essential structure of the full-rank solution, including
comparable energy dissipation behavior and mass conservation.

4 Numerical experiment

In this section, we present some numerical experiments to demonstrate the advantages
of the proposed method.

4.1 Convergence test

Example 4.1 We first verify the spatial and temporal convergence of the proposed
schemes on classical Allen-Cahn equation with a smooth initial condition

u(x, y, t = 0) = sin(πx) sin(π y), (x, y) ∈ [0, 1] × [0, 1]. (4.1)

We set ε = 0.01 and terminal time T = 1.0. Since the exact solution is unavailable, the
temporal error is computed by fixing the spatial mesh size h = 1/256 and comparing
the numerical solutions with a reference solution obtained using a very small time
step (τ = 0.0001). Similarly, the spatial error is computed by fixing τ = 0.0001 and
comparing the numerical solutions with a reference solution obtained using a refined
mesh (with h = 1/512). The numerical errors are computed as:

L2 error = ‖wref − wh‖h .

where wref is the reference solution.
The spatial errors at the final time T , computed using the FR-MLFEM and BUG-

MLFEM for the classical AC equation, are presented in Figure 1. As expected, the
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Fig. 1 Spatial accuracy tests of the BUG-MLFEM at T = 1

Fig. 2 Temporal accuracy tests of the BUG-MLFEM at T = 1

FR-MLFEM achieves (k + 1)-th order accuracy in space ( Figure 1(a)). Figure 1(b)-
(d) report the report the errors and spatial convergence rates for the BUG-MLFEM
with different rank r . We observe that when r is small, the truncation error dominates.
However, for a moderately large rank (r = 8 for this example), the same errors and
convergence rates as the full-rank solution are achieved.

The temporal errors are presented in Figure 2. In Figure 2(a), we additionally pro-
vide the errors and convergence rates computed by the first order Lie-Trotter integrator
(see Remark 3.6).

The results demonstrate that the Lie-Trotter dynamical low-rank finite element
solution achieves first-order accuracy in time, while the proposed Algorithm 3 attains
second-order accuracy in time.
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Fig. 3 Evolution of Energy and modified energy calculated by different methods; Left: FR-MLFEM. Mid-
dle: BUG-MLFEM. Right: Rank. Parameters: Nx = Ny = 513, tolerance η = 0.01‖�‖2

4.2 Modified energy

Example 4.2 In this example, we consider the classical AC equation with domain
� = [0, 2π ] × [0, 2π ] and the initial data choose as

u(x, y, t = 0) = 0.05 sin x sin y. (4.2)

We solve this problem using the FR-MLFEM and the BUG-MLFEM, with parameters
set to ε = 0.01, k = 1, Nx = Ny = 512. The rank adaptive tolerance is chosen as
0.01‖�‖2. In Figure 3, we plot the standard energy (computed by the FR-MLFEM
with τ = 0.01) and the modified energy of the numerical solutions. Figure 3(a) shows
that as τ increases from 0.1 to 2, the modified energy curve gradually deviates from
the standard energy curve, eventually becoming oscillatory at τ = 2. However, when
τ is small (τ = 0.1), there is no significant difference between the modified energy
and standard energy curves. The energy curves of the low-rank solutions are similar
to those of the full-rank solution, consistent with the theoretical results in Lemma 2.4
for the full-rank scheme and Theorem 3.2 for the low-rank scheme. In Figure 3, it can
also be seen that the energy becomes oscillatory when τ = 2, which is consistent with
the result in Lemma 2.4 and Theorem 3.2 stating that the modified energy is stable
only for τ ≤ 1/Cg for some constant Cg .

Moreover, in this example, we fix τ = 0.1 and set the final time T = 100, and com-
pare the CPU time of the FR-MLFEMandBUG-MLFEMwhile achieving comparable
numerical results across varying parameters, as shown in Table 2. The evolution of
the rank is illustrated in Figure 4. The results indicate that the BUG-MLFEM is sub-
stantially faster than the FR-MLFEM as expteced, owing to its lower computational
complexity.
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Table 2 CPU time of the numerical methods.

Method h k m(=n) CPU/s Rate

FR-MLFEM 2π/512 1 513 10.831

2π/512 2 1025 53.597 2.3070

2π/1024 2 2049 285.765 2.4146

2π/2048 2 4096 1891.932 2.7270

BUG-MLFEM(η = 0.001‖�‖2) 2π/512 1 513 2.8465

2π/512 2 1025 4.0354 0.9676

2π/1024 2 2049 7.3826 1.2459

2π/2048 2 4096 80.423 1.9347

4.3 Mass-conservation

Example 4.3 Consider the classical AC equation (1.1) and the conservative AC equa-
tion (1.2). The initial function is taken as an unequal barbell in � ∈ [−0.5, 0.5] ×
[−0.5, 0.5],

u0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

tanh

(
3

ε

(
(x − α

4
)2 + y2 − (0.195α)2

))
, x > 0.07,

tanh

(
3

ε

(
y2 − (0.075α)2

))
, − 0.15 ≤ x ≤ 0.07,

tanh

(
3

ε

(
(x + α

4
)2 + y2 − (0.195α)2

))
, x < −0.15,

(4.3)

The parameters are chosen as ε = 0.01, α = 5
8 . In addition, the parameters for both

FR-MLFEM and BUG-MLFEM are chosen as k = 1, Nx = Ny = 512, τ = 0.1.

We first solve the classical AC equation. The snapshots of the solutions computed
by FR-MLFEM and BUG-MLFEM at different times are presented in Figure 5. As
time evolves, the small bell begin to be absorbed by the bigger bell, coalescing into
a single shrinking bubble, which eventually disappears. There is no visible difference
between the full-rank and low-rank solutions. The evolutions of the mass changes,
original energy, and rank are presented in Figure 7. From these results, we observe
that: (a) the solution of the classical AC equation does not conserve mass, (b) both the
full-rank and low-rank solutions satisfy the energy dissipation law, and (c) the rank in
the low-rank algorithm decreases as the solution evolves toward the steady state.

Next, we solve the conservative AC equationwith RSLMusing the same initial con-
dition. The snapshots of the solutions computed by FR-MLFEM and BUG-MLFEM
are presented in Figure 6. In this case, the two bells coalesce into a larger, increasingly
round bubble. Compared to the classical Allen-Cahn equation, the bubble does not
disappear. From Figure 7, we can observe that (a) both the full-rank and low-rank
solutions conserve mass very well, (b) both the full-rank and low-rank solutions sat-
isfy the energy dissipation law, and (c) the rank in the low-rank algorithm is no more
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Fig. 4 Rank

Fig. 5 Snapshots of solutions of AC equation computed using FR-MLFEM (first row) and BUG-MLFEM
(second row). Parameters: Nx = Ny = 513, τ = 0.1, η = 0.01‖�‖2

than r = 9. The result of AC equation with BBLM is similarly to the RSLM, to save
place, we omit here.

4.4 Symmetry breaking

Symmetry-breaking phenomena are commonly observed in phase field simulations.
Theoretically, for a given initial odd function in a square domain centered at the
origin, the exact solution should always maintain odd symmetry. In applications and
numerical simulations, numerical schemes are expected to preserve this symmetry over
time. However, in practice, this symmetry is often broken in long simulations [35].
Among existing algorithms, IMEX [11], operator splitting methods [51], BDF2 [50],
and ETDRK [15, 46] fail to preserve this symmetry, including the recently popular
SAV approach [44, 45].
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Fig. 6 Snapshots of solutions of AC equation with RSLM, computed using FR-MLFEM(first row) and
BUG-MLFEM(second row). Parameters: Nx = Ny = 513, τ = 0.1, η = 0.001‖�‖2.

Fig. 7 Evolution of numerical solution properties. Left: energy; middle: mass error; right: Rank

Example 4.4 Weconsider the classicalAllen-Cahnequation indomain� ∈ [−0.5, 0.5]
× [−0.5, 0.5] with different initial values

u1 = sin(2πx)sin(2π y),

u2 = sin(2πx)sin(4π y).
(4.4)

We also consider a shifted initial value

u3 = sin
(
2π

(
x + π

8

))
sin

(
4π

(
y + π

8

))
. (4.5)

The snapshots of solutions for different initial values are shown in Figure 8. Since the
initial values in (4.4) and (4.5) are odd and smooth, the solutions should preserve odd
symmetry over time, i.e., u(−x, y, t) = −u(x, y, t) and u(x,−y, t) = −u(x, y, t).
Figure 9 and Figure 10 compare the numerical solutions of FR-MLFEM and BUG-
MLFEM. From the results, it is observed that the odd symmetry of the solution
computed by FR-MLFEM is broken, whereas the BUG-MLFEM preserves symmetry
throughout the simulation.
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Fig. 8 Snapshots of different initial values

A similar numerical result for the case with the initial value u1 was presented in
[35], where symmetry-breaking, similar to that observed with the FR-MLFEM, was
reported. To address this issue, a symmetry-preserving filter was introduced in [35]
to maintain the odd symmetry of the solution. Notably, the proposed BUG-MLFEM
method achieves consistent results by inherently preserving the symmetry without
requiring any such filter.

For the case with the shifted initial value u3, snapshots of the full-rank and low-
rank solutions are presented in Figure 11, where it is evident that the FR-MLFEM
fails to preserve the symmetry at t ≈ 100. The symmetry-preserving filter introduced
in [35] may not be applicable to improve it. In contrast, the BUG-MLFEM method
successfully maintains the symmetry structure. Figure 12 presents the evolution of
energy, mass, and rank. We observe that the energy is non-increasing, and the rank
remains 1 in all cases. Since this is the classical AC equation, which does not preserve
mass, the masses of the full-rank solutions vary over time. In contrast, the low-rank
solutions appear to conservemass, in a certain sense, due to their symmetry-preserving
behavior near steady state.

Remark 4.1 Symmetry breaking may arise from various sources, such as machine
round-off errors, non-symmetric domain partitioning, or errors in numerical integra-
tion. Although these errors are typically small at each time step, they can accumulate
during long-time simulations.Whenmanifested in the coefficient matrices, such errors
correspond to very small singular values. The truncationmechanism in BUG-MLFEM
automatically removes these small singular values, thereby preventing their accumu-
lation and preserving the pattern symmetry.

5 Concluding remarks

A second-order BUG-MLFEM was proposed to solve both the classical and conser-
vative AC equations. The matrix differential equation arising from the semi-discrete
mass-lumped finite element method is decomposed into linear and nonlinear compo-
nents. The linear component is solved analytically, while the nonlinear component
is addressed using the second-order augmented BUG integrator. The computational
complexity of the proposed algorithm is O((m2 + n2)r). The mass is conserved up
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Fig. 9 Snapshots of solutions to the AC equation at different times with initial value u1, computed using
the FR-MLFEM (first row) and the BUG-MLFEM (second row)

Fig. 10 Snapshots of solutions to the AC equation at different times with initial value u2, computed using
the FR-MLFEM (first row) and the BUG-MLFEM (second row)

Fig. 11 Snapshots of solutions to the AC equation at different times with initial value u3, computed using
the FR-MLFEM (first row) and the BUG-MLFEM (second row)
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Fig. 12 Evolution of numerical solution properties. Left: Energy; middle: Mass; right: Rank

to the truncation tolerance in the conservative Allen-Cahn equation. The modified
energy is dissipative up to a high-order error of O(τ (τ 2 + hk+1)). Hence, the energy
stability property remains valid. Although some conservative BUG integrators have
been developed in the literature (see, e.g., [19]), implementing them for the proposed
method in the nonlinear problems is challenging, which will be addressed in future
work. Numerical experiments demonstrate that the BUG-MLFEM solution preserves
mass for the conservative AC equation and ensures energy dissipation. Additionally,
the tests reveal that the BUG-MLFEM solution maintains symmetrical phenomena,
highlighting its robustness for long-time simulations. Extending these results to three
dimensions and exploringmore general nonlinear terms, such as the logarithmic Flory-
Huggins potential, would also be interesting directions for future research.

Appendix A Proofs and algorithms

In this section, we present some necessary proofs, and provide some useful algorithms.

A1 Proof of Lemma 2.2

Proof Let qm = [1, · · · , 1]
 ∈ R
m be a vector of ones. It can be verified that (0, qm)

is an eigenpair of the matrix Lx = −M−1
x Ax , i.e., Lxqm = 0qm . Then, it follows

eτε2Lx qm =
∞∑
l=0

τ l

l! (ε2Lx )
lqm =

∞∑
l=0

(0τ)l

l! qm = Imqm = qm,

which implies that (0, qm) is an eigenpair of the matrix eτε2Lx . Similarly, (0, qn) is an
eigenpair of the matrix eτε2Ly , i.e., eτε2Lyqn = qn , where qn is also a vector of ones.

Next, we state that the matrices Mxeτε2Lx and Myeτε2Ly are symmetric. We will

prove this for Mxeτε2Lx ; the case for Myeτε2Ly can be shown similarly.
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(
Mxe

τε2Lx
)
 =

(
e−ε2τM−1

x Ax
)


M

x = e(−ε2τM−1

x Ax )


M


x

= e−ε2τ A

x (M−1

x )
M

x = e−ε2τ Ax M−1

x Mx

= MxM
−1
x e−ε2τ Ax M−1

x Mx = Mxe
−ε2τM−1

x Ax M−1
x Mx = Mxe

τε2Lx .

Then, using the cyclic property of the Frobenius inner product gives

(eτε2LZ , I)M = (Mxe
τε2Lx Zeτε2L


y My , I)F = (Z , (Mxe
τε2Lx )
I(eτε2L


y My)

)F

= (Z , Mxe
τε2Lx qmq



n Mye

τε2Ly )F

= (Z , Mxe
τε2Lx qm ((Mye

τε2Ly )
qn)
)F

= (Z , Mxe
τε2Lx qm (Mye

τε2Ly qn)
)F

= (Z , Mxqm (Myqn)
)F = (Mx ZMy , I)F = (Z , I)M.

��

A2 Proof of Lemma 2.4

Proof Recall that Wn+1,1 = e
τ
2 ε2LWn+1 = SLτ

2
Wn+1. Using (2.31), it can be written

as
Wn+1,1 = SLτ

2
SLτ

2
SNτ Wn,1 = SLτ SNτ Wn,1,

which is equivalent to
SL−τWn+1,1 = SNτ Wn,1.

Then it holds

1

τ

(
SL−τWn+1,1 − Wn+1,1

)
+ 1

τ
(Wn+1,1 − Wn,1) = 1

τ
(SNτ Wn,1 − Wn,1). (A.1)

By (2.31), it can show

SNτ Wn,1 − Wn,1 = τ

2

(
N (Wn,1) + N (Wn,2)

)
.

Thus,

1

τ

(
SL−τWn+1,1 − Wn+1,1

)
+ 1

τ
(Wn+1,1 − Wn,1) = 1

2

(
N (Wn,1) + N (Wn,2)

)
.

(A.2)
The equation (A.2) can be reformulated in finite element form as

1

τ

(
e−τε2Lhw

n+1,1
h − w

n+1,1
h

)
+ 1

τ
(w

n+1,1
h − w

n,1
h ) = 1

2

(
N (w

n,1
h ) + N (w

n,2
h )

)
.

By taking the inner product with w
n+1,1
h − w

n,1
h and using the identity

(a − b, 2a)h = ‖a‖2h − ‖b‖2h + ‖a − b‖2h,
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it follows

1

2τ

[(
(e−τε2Lh − 1)wn+1,1

h , w
n+1,1
h

)
h

−
(
(e−τε2Lh − 1)wn,1

h , w
n,1
h

)
h

+
(
e−τε2Lh (w

n+1,1
h − w

n,1
h ), w

n+1,1
h − w

n,1
h

)
h

−
∥∥∥w

n+1,1
h − w

n,1
h

∥∥∥2
h

]

+ 1

τ

∥∥∥w
n+1,1
h − w

n,1
h

∥∥∥2
h

+
(
g(wn,1

h ), w
n+1,1
h − w

n,1
h

)
h

= 0.

(A.3)

Expanding G(w
n+1,1
h ) in Taylor series yields

G(w
n+1,1
h ) − G(w

n,1
h , 1)h

= (g(wn,1
h ), w

n+1,1
h − w

n,1
h )h + 1

2
(g′(ξ), (w

n+1,1
h − w

n,1
h )2)h .

(A.4)

where ξ is a function between w
n+1,1
h and w

n,1
h . Given |g′(ξ)| ≤ Cg and τ ≤ 1

Cg
, it

holds

Ẽ(w
n+1,1
h ) − Ẽ(w

n,1
h ) ≤ −

(
1

2τ
− 1

2
g′(ξ)

)
‖wn+1,1

h − w
n,1
h ‖2h ≤ 0.

��

A3 Reduced generalized QR decomposition

We introduce a reduced generalizedQR (RGQR) decomposition to generate new bases
U ∈ R

m×r̂ and V ∈ R
n×r̂ from matrices K ∈ R

m×r and L ∈ R
n×r , respectively,

[U , V ] = RGQR(K , L, Mx , My), (A.5)

where U
MxU = Ir̂ , and V
MyV = Ir̂ . This method can reduce the computational
cost while maintaining the accuracy.

Algorithm 4 RGQR decomposition

Input: Marices K ∈ R
m×r , L ∈ R

n×r , Mx ∈ R
m×m , and My ∈ R

n×n .
Output: Bases U ∈ R

m×r̂ , V ∈ R
n×r̂ with r̂ ≤ r .

• Step 1: Perform generalized QR (GQR) decompositions [55] and obtain:

[U1, R1] = GQR(K , Mx ), [V1, P1] = GQR(L, My),

where U

1 MxU1 = Ir , and V


1 MyV1 = Ir .
• Step 2: Perform singular value decomposition (SVD) on R1 and P1:

[Qu, �u,∼] = svd(R1), [Qv,�v,∼] = svd(P1).
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Determine the numerical ranks ru and rv by identifying the number of singular
values greater than 10−12 in �u and �v , respectively, and set r̂ = max(ru, rv).

• Step 3: Construct the reduced bases:

U = U1Qu(:, 1 : r̂), V = V1Qv(:, 1 : r̂).
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