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ABSTRACT

In this paper, we investigate a sixth-order elliptic equation with the simply supported boundary conditions in a polygonal domain.
We propose a new method that decouples the sixth-order problem into a system of second-order equations. Unlike the direct

decomposition, which yields three Poisson problems but is restricted to polygonal domains with the largest interior angle no more

than z /2, we rigorously analyze and construct extra Poisson problems to confine the solution into the same function space as that

of the original sixth-order problem. Consequently, the proposed method can be applied to general polygonal domains. In turn,
we also present a C° finite element algorithm to discretize the new resulting system and establish optimal error estimates for the
numerical solution on quasi-uniform meshes. Finally, numerical experiments are performed to validate the theoretical findings.

MSC2020 Classification: 65N12, 65N30, 35J40

1 | Introduction

Consider the sixth-order elliptic problem, also known as the tri-
harmonic problem

—-Au=f inQ, u=Au=Au=0 ondQ (11)
where Q C R? is a polygonal domain and f € H~(Q). The
boundary conditions in (1.1) are commonly referred to as sim-
ply supported boundary conditions [1]. The sixth-order partial
differential equations (PDEs) arise from various mathematical
models, including applications in differential geometry [2], thin
film equations [3], and the phase field crystal model [4-7]. The
conforming finite element approximation for (1.1) necessitates

H?3 conforming finite elements, typically involving intricate con-
structions of the finite element space and the variational formu-
lation [8-11]. Recently, a nonconforming H?3 finite element was
proposed in [12], where the element is composed of H' conform-
ing finite elements and additional bubble functions. C° interior
penalty discontinuous Galerkin (IPDG) and C!-IPDG methods
were proposed in [13] for the sixth-order elliptic equations with
clamped boundary conditions. To balance the weak continuity
and the complexity associated with choosing penalty parame-
ters, a family of P, interior nonconforming finite element meth-
ods was proposed in [14]. Additionally, a mixed finite element
method was introduced in [1], based on low-order H! conform-
ing finite elements, with an optimal error estimate under an
appropriate regularity assumption.
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The direct mixed finite element method, employing C? finite ele-
ments, offers an appealing approach for addressing high-order
elliptic problems, such as the biharmonic problem [15-18] and
the sixth-order problem (1.1). This is primarily due to the bound-
ary conditions, which facilitate the derivation of three entirely
decoupled Poisson equations. This suggests that a plausible
numerical solution could be attained by simply employing a finite
element Poisson solver within the mixed formulation. However,
while the implementation of the mixed finite element method is
straightforward, its solution may not always be reliable, as the
solution obtained from the Poisson problem might reside in a dif-
ferent Sobolev space compared to that of the original sixth-order
problem (1.1). This discrepancy is evident in the fact that the solu-
tion to the Poisson problem typically belongs to H'(Q), whereas
that of the sixth-order problem (1.1) usually belongs to H3(Q).
This phenomenon was identified in the context of the bihar-
monic equation with Navier boundary conditions, known as the
Sapongyan paradox [19, 20]. To confine the solution of the Pois-
son problem to H?(Q), an additional Poisson problem needs to
be solved [15], particularly when the polygonal domain features
a re-entrant corner. For the sixth-order problem (1.1), achieving
confinement of the solution to H3(Q) is not a trivial task.

The direct mixed formulation, which decomposes the problem
into three Poisson equations, actually defines a weak solution in
a larger function space compared to that of Equation (1.1). This
mismatch in function spaces does not impact the solution in a
polygonal domain where the largest interior angle is no more
than z /2. However, when the largest interior angle exceeds 7 /2,
the direct mixed method allows for additional singular functions,
leading to a solution different from that of Equation (1.1). To
confine the solution to the correct function spaces, we propose
a modified mixed formulation aiming at eliminating the singu-
lar functions. More specifically, we first rigorously establish that
the space of the singular functions, or equivalently, their image
space under the Laplace operator, is finite-dimensional. In par-
ticular, the dimension of the singular function space associated
with a corner depends on the corresponding interior angle: it is
0 if the angle lies in (0, 7 /2], 1 if in (x /2, ), 2 if in (7, 37 /2], and
3 if in (37 /2,2x). Subsequently, we identify a basis for the sin-
gular function space, or equivalently, its image space. Finally, we
formulate the modified mixed formulation by removing the solu-
tion component that resides in the singular function space. The
resulting formulation is shown to be well-posed, and the solution
is equivalent to the original problem.

In turn, we introduce a numerical algorithm to solve the proposed
mixed formulation, utilizing piecewise linear C° finite elements
on quasi-uniform meshes. Meanwhile, we conduct an error anal-
ysis on the finite element approximations for both the auxiliary
functions and the solution u. For the auxiliary functions, the
errors in the H'! norm are standard and have a convergence rate
R™MEY | where o is the largest interior angle of the polygonal
domain; the L? error estimates can be obtained using the dual-
ity argument. For the approximation to the solution u, the error
in the H' norm is bounded by (i) the H! interpolation error of
the solution u; (ii) the H~! error for the auxiliary functions; and
(iii) the H' errors and the weighted L2 error for the approxima-
tions to the additional intermediate Poisson problems that con-
fine the solution to the correct function space. Depending on the

largest interior angle, the convergence rate for the H! error of
the numerical solution is dominated by either the degree of the
polynomials or the singularity of the intermediate functions.

In summary, we propose a C° finite element algorithm that
reduces the sixth-order problem with simply supported boundary
conditions to a system of second-order equations. The key contri-
butions of this work are outlined as follows:

« Compared to existing penalty methods and nonconforming
approaches, the proposed method is simple and intuitive in
its formulation, and a plausible numerical solution can be
obtained using only a standard C° finite element Poisson
solver.

« The direct mixed formulation, which decomposes the orig-
inal problem into three Poisson problems, fails to maintain
equivalence with the original problem when the largest inte-
rior angle exceeds z /2. In contrast, by carefully confining
the intermediate functions to the appropriate function space,
the proposed method remains valid for general polygonal
domains, regardless of whether any interior angle exceeds
/2 or not.

« We rigorously derive optimal error estimates for the pro-
posed method on quasi-uniform meshes using C° linear
finite element polynomials.

« Based on the largest interior angle of the domain, we con-
duct numerical tests to compare the solutions obtained from
the direct mixed finite element method and the proposed
method. In addition, we evaluate the convergence rate of the
proposed method.

The rest of the paper is organized as follows: In Section 2,
according to the general regularity theory for second-order ellip-
tic equations [21-25], we introduce the weak solution of the
sixth-order problem (1.1). Additionally, we discuss the orthogo-
nal space of the image of the operator —A in H(}(Q) and iden-
tify basis functions of this space. We then propose a modified
mixed formulation and demonstrate the equivalence of the solu-
tion to that of the original sixth-order problem. In Section 3, we
present the finite element algorithm and derive error estimates
on quasi-uniform meshes for both the solution u and the auxiliary
functions. Finally, in Section 4, we present numerical test results
to validate the theory.

Throughout the paper, the generic constant C > 0 in our esti-
mates may vary across different occurrences. Its value depends on
the computational domain but remains independent of the func-
tions involved or the mesh level in the finite element algorithms.

2 | The Sixth Order Problem

2.1 | Well-Posedness of the Solution

Denote by H™(2), m > 0, the Sobolev space consisting of func-
tions whose ith derivatives are square integrable for 0 <i < m.
Let L*(Q) := H%(Q). If m is not an integer, then it defines
the fractional Sobolev space. Denote by D(Q) the space of
infinitely differentiable functions in Q with compact support.
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We define Hj(L) to be the closure of D(Q) in H*(L). Recall that
H3(Q) c H*(Q) for 0 < s < 1 is the subspace consisting of func-
tions with zero traces on the boundary 0Q [26]. We shall denote
the norm || - || ;2 by || - || when there is no ambiguity about the
underlying domain. Recall that for D C R?, the fractional order
Sobolev space H*(D) consists of distributions v in D satisfying

2 T [0%0(x) = 0*v()|?
60y = Mol + X [ [ RO day < .

laj=m

where a=(a,....,ay) € Zio is a multi-index such that
0" =97 ...0% and |a| = T«

i=1%
We define the space
V={¢|deHQ),dlyg =0, Aplyg =0} (2.1

then the variational formulation for Equation (1.1) is to find u €
V such that,

a(u, ¢) :=/VAu~VA¢dx =/f¢dx= (f.$), VeV
“ ¢ 2.2)
For (2.2), we have the following result:

Lemma 2.1. Given f € H™Y(Q) for the variational formula-
tion (2.2), there exists at most one solution in V.

Proof. We postpone the proof of the existence of the solution to
Theorem 2.17. Assume that (2.2) has two solutions u; and u, in
V. Let éu = u; — u,. Then we have

au,$)=0, pev (2.3)

Note that su eV implies Asu€ HX(Q). In addition éue
H*(Q) N H}(Q). Then, by the Poincaré-type inequality,

IVASull 2 CollAdull o) = CollAdull = Cliull 120,

where ([21], Theorem 2.2.3) has been used in the last inequality.
By setting ¢p = éu in (2.3), it follows

0 = a(du, 6u) = ||VASu||* > C||6ul| 412y = 0.
Thus §u = 0, which implies u; = u, in H*(Q), and therefore u; =

u,inV. O

2.2 | The Direct Mixed Formulation

Intuitively, we can decouple (1.1) into a system of three Poisson
problems by introducing auxiliary functions w and v, satisfying:

—Aw=f inQ, —-Av=w in Q,
w=0 onodQ; v=0 onodQ;
—Au=v inQ,
and 0 (2.4)

We refer to (2.4) as the direct mixed formulation. Note that
numerical solvers for the Poisson problems (2.4) are readily avail-
able, while numerical approximation of the sixth-order problem

(1.1) is generally a daunting task. The weak formulation of (2.4)
is to find @, v, w € H;(Q) such that

A(w,p) = (f.$). Vo€ Hj(Q) (2.52)
A, p) = (w,y), Yy € H)(Q) (2.5b)
A(i,7) = (v,7), VYt € HNQ) (2.5¢)

where

AP, y) = / V¢ - Vydx.
Q

Assuming that the source term f in (2.5) and (2.2) satisfies f €
H~Y(Q) c V*, the solutions i, v, w of the Poisson problems in
(2.5) are well-defined [27]. The important question is whether the
solution & in (2.5) is the same as the solution « in (2.2).

To address this question, it is imperative to delve into the solution
structure of the Poisson problem within a polygonal domain. This
exploration will be undertaken in the subsequent subsection.

2.3 | Image of the Laplace Operator in H)(Q)
and Its Orthogonal Space

Assume that the polygonal domain Q has at most one interior
angle greater than % Let @ be the largest interior angle with
the vertex Q. Without loss of generality, we set Q as the origin
and represent polar coordinates centered at the vertex Q as (r, 9),
where the interior angle w is spanned by two half lines # = 0 and

6 = w. We construct a sector K:f C Q at Q with radius R > 0 as
KX ={(rcos,rsind) eQ|0<r<R,0<0<w}

A sketch drawing of the domain Q is depicted in Figure 1.

To begin with, we introduce a general Poisson problem

z =0 on 0Q (2.6)

—Az=gin Q,

Recall the space V in (2.1). For any function ¢ € V, it can be ver-
ified that —A¢ € Hé (Q). Then we have the following result.

Lemma 2.2. The mapping—A : V — H(Q) is injective and
has a closed range, where the subspace V' is given in (2.1).

Proof. Let z,,z, be functions in V' C H}(Q) satisfying Az, =
Az,. Then the function g=-Az, =-Az, € Hj(Q). By the
Lax—Milgram Theorem for the Poisson problem (2.6), it follows

FIGURE1 | DomainQ containing a reentrant corner.
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z) =z, in H}(Q), and hence z, = z, in V, demonstrating the
injective nature of the mapping.

Denote the image of the mapping by M C H;(Q). Consider a
sequence {g;}22, in M satisfying g, := —Az, — gforz; € H*(Q),
which implies that g; € M is Cauchy and g € H; (). We now

show M is closed, namely, g € M. By the regularity result for
the elliptic equation, it holds

1z = zull 3@y < Cllgw — 8ull o) (2.7)
which implies {z;}?, is also Cauchy in V. Since the subspace
V is complete, it follows z; - z € V, thus —Az;, - —Az € M.
Namely, g = —Az € M. Therefore, the space M is closed. m]
Recall the image M of the mapping —A in H; (). Let M* be
its orthogonal complement in Hé (Q). Namely, for any function
v € H}(Q), there exist unique vy, € M and v, € M* such that

v=v,,+0; (2.8)

and
Vo, Vo) =0 (2.9)

In other words, M @ M* = H;(Q). By the definition of M, the
condition (2.9) is equivalent to

(VAz,Vv,)=0, VzeV.

In the following, we will show that the space M* is
finite-dimensional, allowing for the determination of its basis.

Denote the Zth side of 9Q by T',, where I', is open. For V¢, y €
H*(Q), Green’s formula gives

/ A ydx — / Apydx
Q Q

-y / B0 (M) — 0a0Aw + Mg — 0y(AdIwds, (2.10)
3 r,

where n is the outward normal derivative.
We denote by D(R2) the space of infinitely differentiable func-
tions with compact support in Q. Then we can show the following
result.
Lemma 2.3. A function v belongs to M* if and only if v €
H{(Q) is the solution of the following (adjoint) boundary value
problem
A’v=01in Q, v=0, Av=0ondQ (2.11)
Proof. (=) By (2.9), itholds for Vv € Mt andz €V,
(=VAz,Vu)=0 (2.12)
In particular, for Vz € D(Q) C V,
(=VAz,Vu) =0 = (z,A%), (2.13)

which implies A%v = 0in Q.

Define D(A?, H™1(Q)) to be the maximal extension of the bihar-
monic operator in H&(Q):

DA, HTY(Q) :={ve H)(Q) : A’ve H'(Q)}.

Note that v € M+ c D(A%, H~1(Q)). Now, suppose v € H*(Q) n
M. By Green’s formula, it holds for z € V,

(=VAz, Vv) =0 = (z,A%v) — 2/ z0,(Av) — 0, zAv
¢ Iy
+ Azo,vds. (2.14)

Then (2.13), (2.14) together with the boundary condition z =
Az =0 on every I', yields the boundary value condition Av =0
on I',. Given that H*(Q) is dense in D(A?, H™}(Q)) [26], the
density argument asserts that the same boundary condition also
holds for any v € M* C H(Q). Consequently, (2.11) holds.

() For ve H}Q) satisfying (2.11), it follows ve
D(A?, H(Q)). Suppose v € H*(Q) n D(A?%, H(Q)). By (2.11)
and Green’s formula, (2.14) also holds for Vz € V. Since H*(Q) is
dense in D(A%, H~'(Q)), the equality (~VAz, Vv) = 0 also holds
for v € D(A%, H"1(Q)) and implies v € M*. O

One of the main goals of this section is to show that M* is finite
dimensional and to identify the basis of M*. Next, we introduce
some pertinent functions in the domain Q.

Definition 2.4. Given R > 0 such that KR c Q. Let N >0
be the largest integer satisfying N < 27‘” with values specified in
Table 1. Additionally, let = € (0, 1) be a given parameter. (i) For

1 <i < N, we define the H~1(Q) functions,
E(r,0;7,R) 1= y(r,0;7, R)+ ((r,0;7, R) (2.15)
where
xi(r,0;7, R) = n(r;z, R)r’% sin(%e), (2.16)

with the cut-off function 5(r; r, R) € C*(Q) satisfying n(r; z, R) =
1for0<r<zRand n(r;7,R)=0for r > R, and §; € H(Q) is
obtained by solving

—Af =Ay inQ, {; =0 o0n 0Q (2.17)

(ii) For 1 <i < N, we define o, € H}(Q) satisfying

—Ac; =¢,in Q, 0; =0 on 0Q (2.18)

Remark 2.5. If N =0, both the function sets {&}Y and
{o; ﬁl are empty. The functions §;,i = 1, ..., N defined in (2.15)
are not in H(Q).

TABLE1 | The range of g and the value of N for different @ in
Definition 2.4.

©, %] (5,7 (x, 31 (%,2m)

(2,00) (1,2) G.D G:3)

0 1 2 3

e

ZSIN

4 o0f 22

Numerical Methods for Partial Differential Equations, 2025

85U8017 SUOWWIOD BAIIa1D 8|qedtidde ayy Aq pausenob afe sejole YO ‘sh JO S9N 10y ArIq1 8UIUO /8|1 UO (SUONIPUD-PUE-SWB 00" AB | 1M ARe1q1 U1 |UO//STIY) SUOTIPUOD Pue SULB | 8L 88S *[520zZ/0T/8T] Uo Ariqiauliuo A8|Im * osed [3sexe 1 JO Aisieaun - Buswied Ul A AQ 8700, WNU/Z00T OT/10p/LI0o A 1M AIq1 Ul jUO//SdNY Wo.) papeojumod ‘9 ‘G202 ‘922860T



Define D(A, H~'(Q)) to be the maximal extension of the Laplace
operator in H1(Q) [26],

DA HYQ) :={ve HYQ) : Ave HY(Q)}.
For the functions ¢; in Section 2.4, the following properties hold.

Lemma 2.6. Given n € C*(Q) in Definition2.4, the functions
& € DA H(Q),i=1,...,N,areuniquely defined and satisfy

—A§ =0inQ, & =0on 0Q (2.19)

Moreover, &; depends on the domain Q, but noton = and R. Namely,
for any positive numbers 7, 7, and R;, R,, it holds

E(r,0) :=&(r,0;1, R) =&(r,0;7,, R,) (2.20)

Proof. For y, given in (2.16) with 1<i < N, it can be
verified that y, € C®*(Q\ K?) for any 6§ >0 and y, =0 for
(rcosf,rsinf) € Q\ Ka’f. Moreover, Ay; =0 if r < 7R and r >
R. These imply that Ay, € C*(Q) C L3(Q). Given n € C®(Q),
the explicit function y; belonging to H1(Q) in (2.16) is uniquely
defined, so is Ay,. In addition, ¢, € H&(Q) is uniquely defined
via (2.17). Therefore, & in (2.15) is uniquely defined due to the
uniqueness of y; and ¢;.

Taking —A on both side of (2.15) yields
—A& =—(Ay +A) =0,

where (2.17) have been applied. In addition, & =0 on 9Q is
obtained by y; = 0 and {; = 0 on 0.

Next, we prove (2.20). By taking 6 € (0, min{z, R, 7, R, }), it fol-
lows K2 ¢ K2 n K2™ c Q. By (2.16), we have

Xi(r,0;7, R) — x(r,0;7,, R,) =0, (rcosf,rsinf) e Ki
Recall that y,(r,0;7;, R;) € C*(Q\ K?), j = 1,2. Then it follows
)(i(r, 0, 71, Rl) - )(i(r, 0; Ty, Rz) € C*(Q).

Since ¢;(r,0; 7;, R;) € H(Q), j =1,2, we have

& 1 =&(r 07, R) = §(r, 0,7, Ry)
={i(r0:7, Ry) = {i(r, 0575, Ry)
+ (Zi(r, 0;71, Ry) — xi(r,0: 75, RZ)) € H(}(Q)'

Meanwhile, from (2.19), we have

A€, = A&(r,0;7,, R) — A& (r, 0,75, R,) = 0in Q,
& =0on Q. (2.21)

By applying the Lax-Milgram Theorem to (2.21), it is established
that &, = 0, indicating the validity of (2.20). o

Remark 2.7. Lemma 2.6implies that&(r, 8; 7, R) in Section 2.4
can be replaced by &(r,8). Moreover, the H~'(Q) functions
&,(r,0) # 0, because otherwise we have y;, = —¢; € H(}(Q),which
contradicts the fact that y; ¢ H(Q).

Subsequently, for the functions o, in H& () defined in Section 2.4,
the following property is satisfied.

Lemma 2.8. Thefunctions s, € D(A%, HY(Q)),i=1, ..., N,
in Definition 2.4 are uniquely defined and satisfy

AZO',- =01in Q, o; =0,

1

Ao; =0 on 0Q (2.22)

Proof. Note that o, is obtained through the Poisson problem
(2.18) with ¢&; as the source term. From Lemma 2.6, &, is uniquely
defined, which yields the uniqueness o;. Applying —A to (2.18) in
conjunction with (2.19) yields (2.22). o

For both functions &; and o;, we have the following results.
Lemma 2.9. (a) The functions &(= As,), i =1,2, ..., N, are
linearly independent. (b) The functions6;,Vo,,i = 1,2, ..., N,are
also linearly independent, respectively.

Proof. (a) &(r,0) £0, because otherwise we have y, =

—{ € H(}(Q), which contradicts the fact that y, ¢ H&(Q). We
assume that

Y g =0 (2.23)

where C;, i =1,2,..., N are some constants. Plugging (2.15)
into (2.23) gives

N N
Y Cxi==).Cti € HY(Q).
i=1 i=1

Note that y, & H)(Q), i = 1,2, ..., N. Therefore, it holds
N
Zc,. 7=0 (2.24)
i=1

Multiplying  (2.24) by F o, we have CNrfi N =
—Zfizlqr—f x; € H'(Q), which contradicts the fact that
Cyr o yy & H™X(Q). Thus, it follows Cy =0.Fori =2, ..., N,
multiplying (2.24) by r~=, the same argument yields
Cy41-; =0.Thus, &,i=1,2, ..., N, are linearly independent.

(b) We assume ZIZIC{ o; = 0 for some constants C/ and apply —A
to both sides of the equation, it follows

N
Y=o
i=1

By (a), we have C/ =0, i=1,...,N, which implies ¢;, i =
1,2, ..., N, are linearly independent. The linear independence
of Vo, can be proved similarly. O

Corollary 2.10. Thespacespan{c;,i=1,...,N} C M*,and
the dimension of M satisfies dim(M*) > N.

The proof follows from Section 2.3, Lemma 2.8, and Section 2.9.
Lemma 2.11. Forany function v € H}(Q), it holds

(1,&)=(Vo,Veo,), Vi=1,...,N (2.25)
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where & ando; are given in Section 2.4. In particular, if v € M, it
holds
(0,&)=(Vv,Vo)=0, Vi=1,....N (2.26)

Proof.  Multiplying (2.18) by v € Hy () and applying Green’s
formula yield (2.25). Since o; € M, (2.26) follows from (2.9). O

To determine the dimension of M*, we let /1[2 be the eigenvalues
to the following one dimensional problem

—Ogpt; = 12, in(0,@), PO =Plw)=0  (227)

For i > 1, it is clear that when 4, > 0,

L= 4= \/zsin<i—ﬁ€> (2.28)
w w w

In addition, we also recall the following result for the Poisson
problem (2.6).

Lemma 2.12. Assume that g € HY(Q), and A, = ':”, 1<i<
N for N given in Table 1, is not an integer, namely w # % and
w # 37” Then the solution z of the Poisson problem(2.6) from the
space H'*(Q) n H(}(Q) fora < g possesses the asymptotic repre-
sentation in the neighborhood of Q,

N .
2(x) = #(x) + n(r);d,(m)*%r% sin(%) (2.29)

where 2(x) € H3(Q) N H&(Q) and the coefficients d; are defined by
d=(g¢&), i=1....m (2.30)

Moreover, it follows that

N

12l ) + D 1dil < Cllgll o (231)
i=1

Proof. The proof can be found in Theorem 3.4 in [25] and
Section 2.7 in [21]. o

Based on Section 2.12, we can identify the dimension of M* as
follows.

Lemma 2.13. Under the condition in Section 2.12. The dimen-
sion of M* is equal to the cardinality of the set {4, : 0 < A; < 2},
namely
dim(M*) =card {4, : 0< 4, <2} =N,

where the condition 0 < A; < 2 correspondsto1 <i < N.
Proof. For Vv € M*, by (2.9) it holds

(Vg,Vu)=0, VgeM (2.32)
For the Poisson problem (2.6) with g € M C H(}(Q), Section 2.2
implies that its solution z € V C H3*(Q). By Section 2.12, z €

H3(Q) is equivalent to the fact that for 4; € (0, 2), the coefficients

d; = (g §l> =(Vg, Vo) =0 (2.33)

where we have used (2.25) in the second equality. If 4; is
not an integer, 4; € (0,2) corresponds to the integer i € [1, N].
(2.32)and (2.33) imply that M* C span{c;, i =1, ..., N}, which
together with Section 2.10 gives the conclusion. O

The cases of v = % and 37” are not covered by Section 2.12. To
address this limitation, we introduce the following additional
result.

Remark 2.14. The asymptotic representation of the solution z
to problem (2.6) typically involves two types of singular functions
depending on A; = ix/w:

S, = (i;r)fir% sin(%) when /; is not an integer  (2.34a)

S, = re (lnrsin(@> +0 cos(@ )) otherwise  (2.34b)
[0) [0)

Specially, the coefficient of the term in (2.34b) depends locally on
the restriction of the data g to any neighborhood of the corner
[28]. If g € H(}(Q), the solution of problem (2.6) has the expan-
sion [28]

z— Z d,;S, € H Q) (2.35)

0<4;<2

where d, is given by (2.30). In other words, when the source term
g e H(} (€2), the singular function S; in (2.34b) with 4; = iz /e = 2
vanishes in the asymptotic representation of z.

Corollary 2.15.
N. Moreover,

The dimension of M* satisfies dim(M*') =

span{o;, i=1,...,N} =M

Proof. The proof follows from Sections 2.9, and 2.10,
Lemma 2.13, and Section 2.14. |

For Vv € H}(Q), Section 2.15 and (2.9) imply that (Vu,,, Vo,) =
0,1 < i < N and that there exists a unique decomposition,

v=0y+ ) 6o (2.36)
where v,, € M and the coefficients ¢; are uniquely determined
by the linear system,

N
Y\c(Vo,, Vo) =(Vo,Vo), j=1,....,N (2.37)

i=1

By Section 2.11, it holds that for V¢ € H(Q),

(Vo V)= (&, ), j=1,....N (2.38)

Therefore, the linear system (2.39) is equivalent to the following
linear system

N
Yelon &) =(.&) j=1,....N. (2.39)
i=1
Lemma 2.16. The linear system (2.39) or (2.37) admits a
unique solution ¢;,i =1, ..., N.
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Proof.  Since (2.39) and (2.37) are equivalent, we only need to
consider (2.37), which is a finite-dimensional linear system. The
existence of the solution is equivalent to the uniqueness. Let ¢; be
the difference between two possible solutions; it follows

N N
(ZE,VU,.,va/) = YV, Vo)) =0, j=1,...,N.

i=1 i=1

A linear combination in terms of Vo; gives

N N
<ZE[V6,-,ZEJ-VGI-> =0,

i=1 j=1
which means HZZIEI.VQ ” = 0, thus we have

N

ZEiVO'i =0.

i=1
Section 2.9 indicates ¢; =0, i =1, ..., N. Thus, the conclusion
holds. |

2.4 | The Modified Mixed Formulation

Based on the discussion above, we propose a modified mixed for-
mulation for (1.1),

—Aw=f inQ, —Av=w in Q,
w=0 on 0Q; v=0 on 0Q;

~ N .
{—Au =v-).,¢o, inQ,

(2.40)
=0 on 09,

where o, are given in (2.18) and ¢; are given by (2.37).

The modified mixed weak formulation for (2.40) is to find
w, v, € H}(Q) such that

A(w,d) =(f.d) (2.41a)

A, ) = (w,y) (2.41b)
N

A, 7) = (U - Zciai, T> (2.41¢)
i=1

for any ¢, y, = € Hy(Q).

Next, we show that i is the weak solution to the variational for-
mulation (2.2).

Theorem 2.17. Given f € H~Y(Q), let ii be the solution of the
modified mixed weak formulation (2.41). Thenii is equivalent to the
solution of the weak formulation (2.2), namely,u = iin V, and vice
versa.

Proof. Notethatv,s; € H:(Q). Thusv — YN c;0, € H}(Q). By
(2.39), it holds d, = (v = XX ¢;0,.£,) =0, j =1, ..., N. There-
fore, by applying Lemma 2.12 and Section 2.14 to the last Poisson

equation in (2.40), it follows & € H*(Q) n H}(Q). Since Al =
—(v- Zf\ilc,—ai)lm =0, itfollowsii € V.

On the other hand,

N
—A%i =A% — ZciAzai = —A(=Av) = —Aw = f,

i=1

where we have used the result (2.22). Thus, we have i € V' satis-
fying (2.2). Finally, by the uniqueness of the solution of (2.2) in
V', the conclusion holds. O

Therefore, by Theorem 2.17, the solution u of the sixth-order
problem (1.1) satisfies

—Aw=f inQ, —Av=w in Q,
w=0 on 0Q; v=0 on 0Q;

N .
{—Au =v- Zi=1‘3i‘7i in Q,

(2.42)
u=0 on 0Q,

The corresponding weak formulation is to find w, v,u € H&(Q)
such that for any ¢, y, 7 € H}(Q),

A(w, ) = (f,$) (243a)

A, y) = (W, y) (2:43b)
N

A(u, 1) = <v - Zc,ai, T> (2.43c)
i=1

where c;,i =1, ..., N, are given in (2.37).

Remark 2.18. For the following cases, the modified mixed
formulation (2.42) is identical to the direct mixed formu-
lation (2.4): (i) N =0, which happens if ws% as shown
in Table 1; (ii) the boundary of domain Q is sufficiently
smooth; (iii) ¢; =0, i=1,...,N in (2.39) or (2.37), which
is possible for some source term f such that the solution
v € Min (2.42).

Lemma 2.19. The mapping v — v,, in (2.36) defines a norm
non-increasing mapping H(} (Q) = M in the sense

Vol < lIVoll.

Proof. Multiplying (2.36) by —Av,,, integrating over the
domain Q, and applying Green’s Theorem give

N
(V0, Vo) = (Vo Vo) + (ZciVa,,VvM> (2.44)

i=1

Note that

N
(Vo Vo)) = <V<u - Zcia,), v6j>
i=1

N
= (V0,Vo,) - Zc,(vf;,.,vzyj) =0, j=1,...,N,

i=1
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where we have used (2.37) in the last equality. For the last term

in (2.44), it follows
N
<ZC[V6,-, VUM> =0.

i=1
Then, applying Holder’s inequality to (2.44), it follows

Vo ll? = (Vo, Vor) < IV lllIVoll,

[m]

which gives the conclusion.
In addition, we have the following regularity result.

Theorem 2.20. Given f € H™Y(Q), for w,u,v in(2.42), it

follows
lell 1) <CIS N -1 (2.45a)
ol gy <CNf Nl g1 (2.45b)
lull g2y <CI Sl g1 (2.45¢)

Proof. The estimate (2.45a) is a direct consequence of the fact
that the Laplace operator is an isomorphism between H(}(Q) and
H~Y(Q). In a similar fashion,

ol @) S Wl 1) < Cllwlipg) < Cllf lg-1q)

which gives the estimate (2.45b). By Theorem 2.17, it follows u €
V. Moreover, (2.31) gives

N
lull > < Cllo= D ei0;
i=1 HI©Q)
= C”UM”HI(Q) < C”U”Hl(g) < C”f”ﬂﬂ(gp (2.46)
where we have used Lemma 2.19 and Poincaré inequality. m]

3 | The Finite Element Method

In this section, we introduce a linear C° finite element method for
solving the sixth-order problem (1.1). Subsequently, we conduct
a finite element error analysis.

3.1 | The Finite Element Algorithm

Let 7, denote a triangulation of Q consisting of shape-regular
triangles, and let S, C H () be the C° Lagrange linear finite ele-
ment space associated with 7,,. Then we proceed to propose the
finite element algorithm.

Algorithm 3.1. We define the finite element solution of the
sixth-order problem (1.1) by employing the decoupling presented in
(2.43) as follows:

« Step 1. Find the finite element solution w, € S, of the Poisson
equation

Aw,, ) = (f, ), Vpes, (3.1

« Step 2. Find the finite element solution v, € S, of the Poisson
equation

A, w) = (W, @), Yy €S, (3.2)

« Step 3. With y,,i =1, ..., N defined in (2.16), we compute the
Sfinite element solution {; , € S, of the Poisson equation

A D) = Ay ), Vg €S, (3.3)
andseté,, = ¢, + 1.
« Step 4. Find the finite element solution Cin€Spi=1,...,N
of the Poisson equation
A6, s D) = (& s D), Vg €S, (34)

« Step 5. Find the coefficient c; , € R by solving the linear system

N

Zci.n<6i,n’§j,n> = <Un’ éj,n)’ .] = 19 e N (35)

i=1

« Step 6. Find the finite element solution u, € S, of the Poisson
equation

N
Au,,7) = <U,, - Zci’ndhn, T>, Vz e S, (3.6)
i=1

Remark 3.2.  According to (3.3),¢;, € S,, while §,, € H™H(Q)
but &, & S,. In addition, the finite element approximations
in Algorithm 3.1 are well defined based on the Lax-Milgram
Theorem.

For the functions in (3.1), the following results hold.

Lemma 3.3.

a. The H~Y(Q) functions & i=1,2,...,N,are linearly inde-
pendent.
b. The functions o;,,Vo,;,, i=1,2,...,N, are also linearly

independent, respectively.
Proof.

a. The proof is similar to the proof of Theorem 2.9a.

b. We assume that Z,LCI.’ 0;, = 0 for some constants C;. The
combination of (3.4) gives

N N
(Zc;éi,md)) = A( C,'lo-i,n’d’) =0.
i=1 i=1

By (a), we have Ci’ =0,i=1,..., N, which implies o, ,,
1,2, ..., N, are linearly independent. The linear indepen-
dence of Vo, , can be proved similarly. O

i =

3.2 | Optimal Error Estimates
on Quasi-Uniform Meshes

Suppose that the mesh 7, consists of quasi-uniform triangles with
size h. Recall the interpolation error estimates [10] on 7, for any
z € H™(Q),s >0,
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i 1,2} -
iz = 2/l gy < CA™MHE2 2] i (3.7)

where m = 0,1 and z, € S, represents the nodal interpolation
of z. Let z, € S, be the finite element solution of the Poisson
Equation (2.6) in the polygonal domain, if z € H*$(Q), s > 0, the
standard error estimate [10, 29] yields

i 1
Iz = z,ll iy < CA™™ V| z]| freminion s

llz = z,Il < CR2™™ I 2|| fromingsn) (- (3.8)

Given g € L*(Q) in (2.6), it is well known that the solution z €
H™*(Q) with a < i (see e.g., [21, 28, 29]). Note that f,Ay, €
L*(Q) in Poisson Equations (2.17) and (2.42), so it follows w, ¢; €
HY*(Q). Note that &, € H~(Q), but Step 3 in Algorithm 3.1 indi-
cates & — &, = {; — ¢;,- Therefore, we have the following error
estimates:

Lemma 3.4. Given w, and §;, in Algorithm 3.1, it follows

lw = w,ll 1) < CA™™ ]| iminien g

(3.92)
lw = w, |l < CA™™ V| w]| rimnan o (3.9b)
g — fi,n“Hl(Q) < cpmintel) ||§i||ul+min(a,u(g) (3.9¢)

g = &iullu S Cll& = &inll < Cp?min{al) G prremingans )
(3.9d)

Note that the basis {c;}¥ given in Section 2.4 is not orthogonal

if w > z. For analysis convenience, we can apply Schmidt orthog-
onalization to obtain an orthogonal basis {,}~

i=1’

6, =0y,
_ (Vo,,Vé,) _
20T Tvap v
(Vo3,Vé,) (Vo;,Vé,)
0y =03 — G, — 6. 3.10
U Va2 Iva,12 2 (3.10)

Namely, (Vé;,V6;) = 6,;, where §,; is the Kronecker delta func-
tion. Furthermore, we denote {&}7 by

51 = 51’
- (Vo,,Vé,) -
N I PN R
B (Vo3,V6,) . (Vou,Va,) .
E=¢— . - : E. (3.11)
PTEVeNE Y VeI
It can be verified that
- A5, =§ inQ, &; =0 on 0Q (3.12)

and its weak formulation is to find &, € H(} (Q) such that V¢ €
HL(Q),

AG,d) = (D) (3.13)
With the new basis {&,}., the third Poisson problem in (2.42)

i=1’

can be equivalently written as

—Au=v-Y" 6 inQ,
" LiniG0 (3.14)
u=0 onoQ,

where the coefficients

G=—"L i=1,...,N (3.15)
' <Gi’€i>
or equivalently,
Vo, V6,
5,:%, i=1,...,N (3.16)
IVa;li

Correspondingly, the weak formulation (2.43c) becomes

N
A, 7) = (u - 25,.5—,.,1) (3.17)

i=1

Similarly, we apply the Schmidt orthogonalization to obtain an

orthogonal basis {5, ,}~,

o-l,n = Gl,m
- (Vaz,m V5'1,n) -
05,=0y, —————————0
2.n 2.n ”V&l,nllz 1.n°
(Vos,,V6,,) (Vo3,,V6,,)
Gy =03, — G, — G, (3.18)
! ! Ve, 02 " (N7 E—

Namely, (Vé,,,Vé,;,)=6;;, where §;; is the Kronecker delta
function. Similarly, we take {&,}"

i=1’

gl,n = él,n’
- (Voy,,V6y,) .
Son=%,— W 1>
z (VO'3",V51 n)~ (Vo—3n’V&2n)~
=&, —0 ’ -—= . (319
S =T e T T o )
For the orthogonal basis {4, ,}1
AG i ®) = (€10 @) (3.20)

and the last two steps of Algorithm 3.1 can be modified as
« Step 5. Find the coefficient ¢; , € R,

oo Swew) Ly (3.21)
<&i,n?§i,n>

- Step 6. Find the finite element solution u,, € S, of the Poisson
equation

N
Au,,7) = (u,, = DB f>, vies, (3.22)

i=1
To show the error estimates, we prepare the following results.

Lemma 3.5. (i) Assumethat0 < s <1.Thenfor$ € Hj(Q) C
H(Q) it follows that r—*¢p € L*(Q) and

lr= ¢l < Cligllgs@) < Clldll g o (3.23)

(i) Ify €10,1), s <1+7y,and ¢ € H) 7(Q) C HX(Q), then we
have r—~'¢p € H™7(Q) and
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17 Bl vy < Cllr | (3.24)

Proof. (i) The estimate (3.23) follows from ([21], Theorem
1.2.15).

(ii) Since s’ — y < 1, then we have r*'*’¢ € L%(Q) by (i) and it
holds [|r=**¢|| < Cl|¢ll (g For (3.24), we have

- r¢.w) (1, r7y)
[Ir~* ¢||H*Y(Q) = sup —— = AL A s
vem@ Wllaae — yemi@ Wil
r_3,+V Y ,
< Sup M S C”r—S +y¢”’
WwEH](Q) ”W”]—n(g)
where (3.23) is used for y in the last inequality. o

Next, we introduce some regularity results for a general Poisson
problem (2.6).

Lemma3.6. For ge H™W«s5(Q) for any se€(-1,0]
anda € (%, g), then (2.6) admits a unique solution z €
H™Me+Ls+2H QY gnd it holds

||Z||Hmin(a+1.x+z)(g) < C||g||Hmm(n71,s>(g) (325)

Proof.  The proof follows from ([25], Theorem 3.1). m|

Lemma 3.7. For f, e(—l,l—%’), i=1,...,N, and a €
12z = 1 z i 1 — ,2min{a-1,4}
ALZ],2) witho € (£,27), ifp € H)(Q) andg = o,
then (2.6) admits a unique solution z € H™2:1+4)(Q) and
holds the estimates

|2l gminizepiasar gy < Cllrmie=LA) | (3.26)

Here, |- | represents the floor function.

ISEE]

€ (1,2), then -1 < fiy =
—1>0. Consequently, i

Proof () Ifwe (%,7[), namely
p<1-Z2<0 and a—1>3|%]

w

holds min{e — 1, 4,} = f, € (~1,0).

-

) If w € (n,27), it follows a € (% g) c (%,1), implying « —

1e (—%, 0). This, together with the assumption on f;, implies

-1 <min{e-1,4}<a-1<0.

Combining (1) and (2), we conclude that for w € (g, 27r> \ 7,
min{a — 1,8} € (-1,0) (3.27)

For V¢ € Hj(Q), taking s=-min{a—1,4}€(0,1) in
Lemma 3.5i yields /™in{e-141 ¢ = r=5¢p € L2(Q) and

||"min{a_l’ﬂi}¢|| =|rell < C”d’”]{s(g) < C||¢||H1(Q) (3.28)

By taking s'=-2min{a-1,5} and y=-min{a-
1,4} in Lemma 3.5ii, it follows g= e H(Q) =
H™inte-LA}(Q) and

gl gminte-si @) = 1P ll vy < Cllr>+ || = Cllrminte=tAl g
(3.29)
(3.28) and (3.29) imply that for V¢ € H; (<),

TABLE 2 | The regularity of o, in different cases. (— means no such
term.)
® o, 2, (m, ] (2,27)
o _ 112+ﬂ1 (Q) H1+a(Q) H1+a(g)
o, _ _ 112+ﬂ2 (Q) H1+a(g)
o3 — — — H*P(Q)
”g”Hmin(ﬂ—l»ﬂy)(_Q) < C”d)”Hl(Q) (3.30)

By Lemma 3.6, the Poisson problem (2.6) admits a unique solu-
tion z € H™n{2+4:1+4}(Q) and

”Z“Hmin(zﬁ-ﬁi.lﬁ-a)(g) < C”g”Hmin(u—Lﬂ;)(Q) (3.31)
which, combined with (3.29), yields the estimate (3.26). O
By (2.15) in Definition 2.4, we have & € H c H~'(Q), where
-1<p<1- f i=1,...,N satisfying ; > ... > 5. Apply-
ing Lemma 3.6 to the Poisson problem (2.18), it follows o; €

H™in2+8.1+a} \which is further specified in Table 2.

Then for the finite element solution o, , in (3.4), we have the fol-
lowing result.

Lemma 3.8. Foro,, in Algorithm 3.1, we have for 1 <i < N,

llo; = o;ll ) < Cpminti+hial (3.32a)
”0'1‘ _ Gin” < Chmin{1+ﬂl+min{a,1},2a} (3.32b)
”rmin(a—l,ﬂ,}(aj _ o-j,n)” < C pin{ 14, a}+min{1+4;,a) (3.32¢)

wherel < j < N.
Proof. The difference of weak formulation of (2.18) and (3.4)
gives

A(6; =0, P) =& = G ®) (3.33)

Let 0,; € S, be the nodal interpolation of o;. Set ¢, =0, ; —
o;, e, =0, — 0;, and take ¢ = ¢; in the equation above, we have

Ale;, e;) = Aleg ) + (& — & €1)s
which implies
||ei||H1(Q) < ||€i||H1(g) +11& - fi,n”rrl(g)-
Using the triangle inequality, it follows

llo; = 6inll ey < lleill gy + el ug)

< C(llei”Hl(Q) +1& - 5i,n||H*1(Q))
< Chmin(1+ﬂ,,a]

where we have used the projection error (3.7) and (3.9d).

To obtain the error in L? norm, we consider the Poisson problem
(2.6). By the Aubin-Nitsche Lemma in ([10], Theorem 3.2.4),
we have
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inf ||z —
u/ES,,” W||H1(Q)

llo; = o4l < Cllo; = 0,1l g1y sup (3.34)
g€L2(Q) llgll
By the regularity (3.25), we have
Jnf Izl < 2= 2/l
< Cpminiel]) ||Z||H1+min(a,1)(g)
< chmrtelig]]. (3.35)

Plugging (3.35) and (3.32a) into (3.34) gives the estimate (3.32b).

We take g=p2mntelilG —¢, ), i=1,....N in (26),
since o; —0;, € H&(Q), so Lemma 3.7indicates that z €
H™in(2+5.1+a} () By (3.7), we have the interpolation error

llz = 2/l grgy < CR™™ | 2| fingaeana ) (3.36)

The weak formulation of (2.6) with given g is find to z € H&(Q)
such that

(Pmntethil(o, — o, ).w) = A(z.y), Vy € Hy(Q).

Set w =0, —0;, and subtract (3.33) with ¢ =z, from the

equation above, it follows
min{a—1,5;} _ 2
1Ly (o; =0l
= A(O'j — 0z zp)+ (fl - éj,,,,zi)
= A("j I Z[) + (fj - éj,nv Zp— z) + (gj - éj,na z)
< ||C7j - O'j,n”Hl(Q)”Z - ZIHHI(Q)
118 = &l (127 = 2l ) + 112l n@)-
By the estimates in (3.9d), (3.32a), (3.36), and the regularity result
in Lemma 3.7, it holds
[|Fntethl (o, — o) I
< Chmin{1+ﬁi,a}+min{l+ﬂj,a} ||z||Hmin(Z+ﬁ ha

@

< Chmin{1+ﬂi,a}+min{1+ﬂj,a} ”rmin{a—l,ﬂi}(o_j _ Gj n)”,
which gives the error estimate (3.32c). O

Lemma 3.4 and Lemma 3.8 imply that || || y-1q), llo;, |l and
IVo,,ll, i =1, ..., N are uniformly bounded when & < A, for
some threshold A,,.

Lemma 3.9. For the basis 6, and the corresponding finite ele-
ment solution & ,, we have

in’

16, = &l g < CA™IHA) =1 N (3.37)

Proof. By Lemma 3.8, it is obvious that

~ ~ in{1 R
161 = 61l = lloy = 61,1l gy < CA™ I,

‘We assume that the conclusion holds fori < j — 1,
=il < ChmintiHha) (3.38)

5,

A quick calculation gives that

Vé; -Vé;,=Vo; - Vo;,

O/ Ve, VE) (V6. V6,,)
- —— V6, — ——— V6,
=\ Vel [IVG; .l
= (Vt)'j - V"j,n)

((Vo;,VEDIIVE, 112 V6,
fi ~(V6,;,. V5, )IV6,11°V5,,)
e~ IV&;11211V6; 112

i

‘We then have
IVG; = V&,,Il <IVo; = VoIl
j-1 H(Vaj, V&)IIV6,,I12Vé, — (Vo,

*2
i=1

V& )IVEIPVE,,
V& 1211VE, ,1I°

We know that V&, obtained through (3.10) depend only on Q.
Therefore, we have

0<y, <Vl <y i=1,...,N (3.39)
where y; = min;, 5 {lIVG;]l}, and y, = max,, .y {|IV&,]|}. Let

RN
h < hy < min {1, (Zy—é) min{1+7] },i =1,...,j —1in(3.37), it fol-

lows that

1 N 1 . .
5715 IVG,,ll Sh—zh’ i=1..,j-1 (3.40)

(3.39) and (3.40) implies

1
- - 3.41
V& II21IVE; 112 ~ ( )
where C is a constant. By Lemma 3.8, it holds
IVo; = VoIl < lloj = 0),ll g < CA™A (3.42)

To this end, we will get an error estimate for
”(Vﬁj, V&)lIVE,,I12V6, - (Vo,,, V&, )IVE,I2VE, | Note that

i

(Vo,, VaplIVe, ,II°Vé; — (Vo ,,
= (Vo; - Vo,,.V6)IIV6,,II°Vé,
+(Vo;,. V6, —
V6, )(IVE,,II> = IVE, 1)V,
+(Vo,,, V&, VG117 (Vs - V&, ,)

V&, VG II°Va,,

V&, IVE,,II° V3,

+ (Vo

n?

=T+ T+ T+ T,
By Lemma 3.8 again, we have
ITy 1 < IVE;, 716, (IVo, = Vo, || < CH™MIHA),
By assumption (3.38), we have
L0 < 11Vo, VG, I2IVE VG, = V6, || < CRmntt+ha),

T30 < 11Ve; VS, HIVE 1 X (1VE]] + 1V5,11)

X [Vl = [IV3;,|l| < ChmntI+ial,

where we used the inequality |||V5,||—[IVé,,Il| <IIVs; —
V&l

Numerical Methods for Partial Differential Equations, 2025
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Last, we have

TN < 1Yo, VS, IVENPIVE; = V|| < ChmR A,

i,n
Thus, we have

”(vc,, V&)IIVé,,I7V5, - (Vo,

Jsn?

V&, VG, II°Va,,

4
< Y IT I < Chminthe), (3.43)
=1

Note that f; > f;, thus the combination of (3.42) and (3.43) gives
155 = &ull ey < CA™RHd (3.44)
The method of induction leads to the conclusion. ]

Lemma3.10. For i=1,...,N, it holds r~™nle-LAlE e

L*(Q) and
[lpminte g | < © (3.45)
where C depends on f; and Q.

Proof. By (2.15), for k < i,

r_min(a_l’ﬁ’}‘fk =n(r; 7, R)r_min{a—l,ﬂil—% sin<k_”0)
@

pominlelhle =T + Ty,
Since f;, < f, <1— ’;—”, it follows
—min{a - 1,5} - % > f,—minfa—1,6,} -1> -1
Therefore, T, € L*(Q), namely,
Il <c (3.46)
For Ty, it follows
T3l < 1™ o) 18l < NGl (3.47)
(3.46) and (3.47) imply that
(| e g | < | Ty Il + I Tl < € (3.48)

By the construction of &, in (3.11), we can obtain the estimate
(3.45). O

Lemma 3.11. Fori=1, ..., N, theorthogonal functions &, in
(3.10), &, in (3.11), and their finite element approximations G, in
(3.18), ¢, in (3.19) satisfy

”51 _ §i,n”H*1(Q) < Chmin[l+ﬂ,+min(a,1},2a} (3.493)
”51' _ 5_”‘” < Chmin{1+ﬂ,+min{a,1},2a} (3.49b)
||rmin(a—1,/3k}(6_i _ &in)” < Chmin{1+ﬁk,a}+min(1+ﬁ‘,a} (3.49(:)

wherel <k < N.

Proof.  Ttis easy to verify that the estimates in (3.49) hold when
i =1, and we assume that they also hold for i < j —1if N > 2.
Next, we prove the estimates in (3.49) hold at j. The proof for
(3.49D) is similar to that for (3.49a), we will skip its proof.

Using the similar argument as in Lemma 3.9, we have that
€l -1 16,11, i =1, ..., N are uniformly bounded. When <
h, for some h,,, it follows that ||.§,.’,,||H,1(Q), [16;,1,1<i<j—Tare
also uniformly bounded.

The difference of the €, — &, ,,j = 2, ..., N, gives

jn?

- o (Vo V5)
5/‘5j,n=§j_fj,n—z< £ Gfi—

(Vo;,,V6,,) . >
i=1 ||V6-’”2 e

Ve, 17

((Vo,, VE)IVG,,II%E
I ~(Vo,,, V5, )IIVE,1I%E,,)

= (5/‘ - fj,n) - ; i

_ _ . (3.50)
4 IVG 11211 VS, , 112

By (3.41), L

Ve Are uniformly bounded. We denote by

(Vo-ja V&i)”V&i,nuzgi - (VGj,na Va’i,n)llvgi ”251',;1
= (VO'j - Vo

e VEDNVE, 1178,
+ (VUj,n’ V6, - Va—i,n)”V&i,nllzgi
2 V& UIVE, 1P = 11VE,11HE;

+(Vo,;,. V&, VG IIPE - &)

+ (Vo

=T+ T+ Ty + T,

By (3.50), it follows

1€ = &all-@) SN = &l
121 (Vo VaDlIva,, 178 - (Vo V3, )1 V6, 1%,

H-1(Q)
’ ; Ve 1121Ve, ,II? ’
From (3.9d), we have
1€ = & ull i1y < CRZ™E (3.51)
By taking ¢ = 0, — 0,,, € Hy(Q) in (3.13), we have
(Vo; = Vo,,,V6) = (0, = 0,,.&) (3.52)

which implies that
T, = <6j - O-j,nvgi>”V6[,n”2§[
= (P (o — o), I Vs, |12,

By Lemma 3.10, we have r~™ne-1A1E e [2(Q). Therefore, we
have the estimate

”Tl”]-]*l(g) < ”rmm(a—l,ﬁ,)(o.j - O'j,n)””rimmmil’ﬁ')gi””V&i.nllzllgillyﬂ(g)
< Chmin(1+ﬁ,,a)+min(1+ﬂ,,a)

- Chmin(1+ﬂ/+min(a,l),2a)

where we have used the estimate (3.32c).
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Subtracting Equation (3.20) from Equation (3.13) and setting ¢p =
o;, yields

(vo-j,n’ V6, -Vé,,) = <Uj,nv‘ft - fi,n>~

Thus, we have by the assumption,

1Tl -1 < ol = Ell @ IVE P NE N 1
< Chmin{1+ﬂi+min{a,1},2a}

‘We have by (3.13) and (3.20),

~ 2 ~ 2 _
IVG,,II7 = IVe; |- =

By the assumption for (3.49¢), we have

|T31| = |<6-i,n - &i’ i,n>|
< [t = gl AE |

< Chmin{1+ﬁ,+min[a,1],2a]

For the second term, we have by the assumption for (3.492),

ITsol = 146, €, = EN < N8Nl 1€ = Ell 10
< Chmin{l+ﬂi+min(a,1),2a}
The estimates of |T5; | and |T5,| imply that

||T3 ||H—l(g) < Chmin(1+ﬁ,+min{a,1),2a) .

Again by the assumption for (3.49a), we have

~ ~ 21z z
1Tl -1 < N1Ve; VG INTIVE NS = €l i@
< Chmin(1+ﬂ,+min(a,1},2a}

Note that f; > f;, we have

4
Z”Tl”H-l(Q) < Chmin[1+ﬂj+min[a,1],2a] (3'53)
=1

The combination of (3.51) and (3.53) indicate that (3.49a) holds
at j, so that the method of induction state that (3.49a) holds for
i=1,...,N.

Next, we prove the estimate (3.49c) holds at j. For j =2, ..., N,
we have

min{a-1.0}~ _ = _ min{a—1,5,} _
r k (crj O'j’n) =r k (0'/- Gj,n)

j-1 . .
_ rmin{a_lvﬂk)z < (Vo-j’ VO',')&. _ (Vo-j,n’ Vai,n) = >
~ i ~ in
S\ Vel V6,117
- rmin{a—l,ﬁk} (Gj —0c. )

Jsn

((Vo,, V& )IIVG,,||2rminte=thl g,

1

where 1 < k < N. By (3.41), W

We denote by

are uniformly bounded.

(Vo,, V&IV, ,||2rmirle=tbl g, — (Vo V5, JIVE || 2rminte-Lhids,

= (Vaj - Vo

jno V‘ﬂfi)”V&i,n||2’minw_l'ﬂk}&i

~ ~ ~ 2 min{a—1,p,} ~
+(V0;,, V6, = V&, )IIVG, I pmin{a ﬂ“}ai

~ -2 ~ 112y, min{a—1.8;} =
+(V0,,. V8, )IV5,,II* = V&, |P)rminte—1hd 5,

+(Vo,;,. V&, )IIVE |PrmMethd (- 5, )

LN

1= Ky + Ky + K3 + K.
By (3.54), it follows

in{a—1 ~ ~ in{a—1
et G = 6, I < e (6, — 6 )|

H(Vaj, V& )IIVE, ,|[2rminte-10) 5,
izl —(Vo,,, V&, )||V6,||2rminte-Lh g, |

+ = o
& V3,121V, I ’

From (3.32b), we have

[|Fmin(a=14,) (Gj _ Uj,n) || < Chmin{l+Aualmin(14+,.a) (3.55)
Similar to the estimate of T, we have by (3.52),
K, = <rmin{a—1,ﬁ,)(o_j — 6, r—min(a—l,/},}g»llva,i’n”2rmin(a—1,/},{}&i.

Since &; € HY(Q) n H™In2+H.1+2)(Q), so we have pminle-14dg,
€ L*(Q) by Lemma 3.5 or from (3.28). Therefore, we have the
estimate

K Il < Pt (o) — o I 1™ E V8, |17
”rmin[a—l,ﬂk]a_i” < Chmin[1+ﬂ,,a]+min(1+ﬂj,a}

— Chmin{1+ﬁj+min{a,l),2a)

the last equality is due to the fact that min{1 + f,,«} = « when
1 <i < N.Similar to the estimate of T, we have

E_E ~ 2
1K 1) < Mo ulllls: = Sinll 1@ 1Vl

. ”rmin{a—l,ﬁk}&i” < Chmin{l+ﬂ,+min{a,1},2a}'

The estimates of | Ty, | and |T5,| above also indicate that

”K3 ” < Chmin{l+ﬂ,+min{a,l},2a}‘

By the assumption for (3.49c¢), we have

1K Il < IVo,  HIVE, IVE P06, - 6, )]
< Chmin(1+ﬁk,a]+min(1+ﬂ,,a] .
Note again that f;, > §;, we have
4
Z”K’” < Cpmin{ LA al+min{ 145, a) (3.56)

=1

The combination of (3.55) and (3.56) indicate that (3.49¢) holds

2 =(Vo,,, V&, )IIVE,||Prminte=thls, ) . -
i — —— i (3.54) at j, so that the method of induction state that (3.49c) holds for
pu VG 1121IVé, Il i=1,...,N. o
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Note that v € H**(Q), then we have the following estimates for
v, in (3.2).

Lemma 3.12. Let v, € S, be the finite element approximation
to (3.2), and v be the solution to the Poisson equation in the mixed
formulation (2.42). Then it follows

1o = 0, |y < CHT ) (3.572)

lo—v,|| < Ch2minte1) (3.57b)

Proof.  Subtracting (2.43b) from (3.2) gives the Galerkin orthog-
onality
AW =-v,y)=(w-w,,v) (3.58)

Let v; € S, be the nodal interpolation of v. Set e = v; —u, e =
v; — v, and take y = e in the equation above, we have

Ale,e) = A(e,e) + (w — w,, e),
which implies
llell gy < llell gy + llw = w, |l g-1q)s
Using the triangle inequality, it follows

lo=v,ll ) < llell gy + el mg)
< C(llell g + llw — w,ll g-1q))-
< C(llell grqy + llw — w,|l) < CR™M N,
where we have used the projection error (3.7, 3.9b). To obtain
the L? error, we consider the problem (2.6) with g = v — v,, then

we have
llo—u,|I* = A(v - v,, 2).

Subtract (3.58) from the above equation and set y = z,;, we have

lo=0v,l*> = A —v,,z — z;) + (W — w,, z;)
=Av-v,z-z)+W—-w,, z; —2)+(w-w,, z)
<= vz = 2l + 1w = w,lll1z = z
+ [lw = w, Il 2]l
< CR2™MO ]| rminian () < CAP™™ =D o — ||,

(3.59)

where in the last inequality we have use the estimates (3.7, 3.9b,
3.57). By the regularity (3.25), we have

||Z||H1+mm(a-1)(g) <Cllv- Un”Hmin(a»l)fl(g) <Cllv- Un” (3.60)

(3.59) and (3.60) give the L? error estimate (3.57b). ]

Next, we carry out the error estimate for the finite element
approximation u, in (3.6).

Theorem 3.13. Let u, € S, be the finite element approxima-
tion to (3.6), and u be the solution to the sixth-order problem (2.2).
Then it follows

N

llu =, |l 1) < Coh + Y CR™MPAN < cpr - (3.61)
i=1

in

where -1 < f; <1- - the convergence rate y =1 if N =0,
andy = min{2(1 + fy),1} if 1< N <3, the constants C, C;
depend on the coefficients ¢, in (3.15).

Proof.  Subtracting (3.22) from (3.17) gives

N
Aw—u,,7)=0W-0,,7)— Z(Ei&, = CinGins 1)
i=1
N
=@W=0,7)+ ) [6,(6,, 5. 7)
i=1

+(Ei,n - Ei)(&i’ T)] . (362)

Let u; € S, be the nodal interpolation of u. Set e =u; —u, e =
u; —u, and take r = e in (3.62), we have

A(e,e) = A(e,e) + (v —v,,e)
N
+ Z [Ei,n(&i,n —6,e)+ (¢, — 5;)(5'576)]-
i=1
Thus, we have
llell iy < C(llell i) + 110 = 0,1l 10y
N
+ D186, = ull o)
i=1
+[¢; - Ei,n”l&i”H‘l(Q)])-
Using the triangle inequality and the inequality above, we have
lu = w,ll o) < llell o) + llell o)

1€;,a16; = Ginll 10

i=1

N
< C<||€||H1(Q) + o= vl + Z

+1¢ = ¢, ||5i||H-1(9)] > (3.63)

We shall estimate every term in (3.63). Recall the solution u €
H3(Q). By the interpolation error estimate (3.7),

lell iy = lu = 1l iy < Chllull 2 (3.64)

Recall that £> % Thus, choosing « = 1/2<:—) in (3.57b),
we have

lo=v,ll g1 < lv=v,ll <Ch (3.65)

By (3.49b), we have

lle

i~ &i,n”H*l(Q) <ll&; - &i,n” < Cpmin{i+fmintal) 2}

To obtain the error estimate for the third term in (3.63), we still
need to show that |¢; | is uniformly bounded. By (3.21), we have

c | = <Un’§~i,n> _ (Vé,,,.Vu,)
g | (V61 V8L
||Un||H1(Q)||5i,n||H1(Q) ||Un||H1(Q) (3.66)
g Woulme '
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where we have used Holder’s inequality. By the regularity result
(2.45) and the estimate (3.57), we have ||v,|| 1, < CI|f]| when
h < h, for some h, which together with (3.40) implies that (3.66)
is uniformly bounded.

Subtracting (3.21) from (3.15) or (3.16) gives

s (Vo,V(6,-6,,) (V6,,,V(v—u0,)

P 1V&,]12 1V, |12
uvqmtwvmkuv~)_ AT
—_— ,V0,,) = .
V& I2IVE,lI2 - " " R

By setting y = (6, — &;,,) € H}() in (2.43), we obtain
(Vu,V(6,-6,,) = (w,6;, — 6,,).
Thus, we have by (3.49)

llwll . in (144, +mi
”Tl“ < ﬁ”o-i _ O-zn“ < Chmln{l+ﬂl+mln{a,1},2a}.
IVa;ll

Subtracting Equation (3.2) from Equation (2.43b) and setting y =
6, ,, We obtain

in’

(Vé6,,,Vo-v,)) =(w-w,,Vo,;,).

ino

Then we have by (3.9b) and taking @ = 3,

I, llw = w,]| < CR2™™= = Ch,

| <
(IVé,ll
Note that
||V5'i,n||2 - ||V5'i||2 = (V&i,n - V&i, V&i,n) + (V&i,n - V&i’ V&i)
= <gi,n - Ei’ 5i,n> + <&i,n - 6_i7§i>'
By (3.49a), we have
“E; _ gi.n”H‘l(Q) < Chmin{1+ﬁ,+min[a,1],2a] (3.67)

It is easy to check

Ein = & Gind)l SNy = Eill @15l o)
< Chmin(1+ﬂ[+min{a,1},2a}

Note that

_ s infe-14) = _ ~ —min{a—14} £
|<0'i,n_°'i’§i>|=|<rmm{a p)(o-i_gi,n)’r minfe ﬁ]§i>|
< PR G, e |

< Chz min{1+f;.a} .

The last two inequalities imply that
”]—v3 ” < Cthin{l+ﬁ[,a} .

Thus, we have

3
&, = &, < DT < Ch2mintt+hie) (3.68)
I=1

TABLE 3 | Thevalueofmin{2(1 + §,),1} and y in Section 3.13 for dif-
ferent w.

® ©,2 &% En @F & X (&2
min{2(1 + 4,),1} — 21+p) 1 1 1 1
min{2(1 + f,),1} — — — 20+p) 1 1
min{2(1 + f;),1} — — — — —  20+p)
y 1 20+8) 1 20+p) 1 20+4)
1 ; . . . . .
0.8}
0.6
e-\
0.4}
02}
0 L 1 1 1 1 1 1
0 1 2 3 4 5 6

FIGURE2 | The H'! convergence rate y in Section 3.13 for
different w.

Plugging (3.64), (3.65), (3.67) and (3.68) with a = % into (3.63),
the conclusion holds. ]

Remark 3.14. TFor the following cases, we have min{2(1 +
p),1}=1,()1<i< N;(ii)i= N and §, > —§. To better view
lu — u, ]l g1 () In (3.61), we explicitly show the value of min{2(1 +
p,), 1} and the value of y in Table 3 and Figure 2.

4 | Numerical Illustrations

In this section, we present numerical test results to validate our
theoretical predictions for Algorithm 3.1 solving the sixth-order
problem (1.1). For comparison, we also implement the finite ele-
ment method for the direct mixed formulation (2.4), referred to
as the direct mixed finite element method. We will utilize the fol-
lowing convergence rate as an indicator of the actual convergence
rate of the exact solutions u, v, w in (2.42) are given, then calculate
the convergence rate by

R = log, [¢—d;alme 1)
| — ¢j|H1(Q)
otherwise, b — |
R =1 J Jj=11H'(Q) (4.2)

ogy —
|¢j+1 - ¢j|H1(Q)

Here, ¢; represents the finite element solution on the mesh Tj,
obtained after j refinements of the initial triangulation 7. It
can be either u i, )5 OF W), depending on the underlying Poisson
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FIGURE 3 |

10’

problem. In particular, suppose the actual convergence rate is
|¢ — &1 1) = O(h?) for p > 0. Then, for the P, finite element
method, the rate in (4.2) is also a good approximation of the expo-
nent g as the level of refinements j increases [30].

We use the following cut-off function in Algorithm 3.1:

0, if >R,
1, if r <R,
1_15(_2r 14z
n(r;t,R)=42" 16\ RA-1) 1-r
+§ ar Lt }
s\ R1-1)  1-r
5
3 2r 147 .
_E(R(PT) - :) , otherwise.

We set the default parameters R = 35—2 T
used, it will be specified.

= % If a different R is

Example 4.1. We solve the problem (1.1) on different
domains using both the direct mixed finite element method and
Algorithm 3.1on quasi-uniform meshes obtained by midpoint
refinements with the given initial mesh. We start with a “wrong
solution” u ¢ H3(Q),

u(r,0) = ii(r, 7, Ryrs sin(ga) (4.3)

where 7j(r; T, R) is also a cut-off function

0, if r > R,
1

i(r;7,R) =31, ifr<zR, (4.4)

1 6 2r 1+7 i+l
S+ Zi:OC,( e :) , otherwise,

with R = ? =1 and the coefficients C, are determined by

solving the linear system

o

i?(R;7,R) = i=0,...,6.

P approximation uj after 10 mesh refinements

4
35
3
25
2
15
1
05
0
5 0 5 10 15

()

A
Sl P approximation u} after 10 mesh refinements Ju-u’fol

10 15 5 0 5 10 15

(f)

Example 4.1 Test case 1: (a) the domain and the initial mesh; (b) the “spurious solution” u; (c) the direct mixed finite element solution
; (d) the difference |u — M10| (e) the solution u o from Algorithm 3.1; (f) the difference |u — u

10|'

The source term f is obtained by calculating
f=-A(AAw),

and it can be verified that f € L?(Q). Note that u ¢ H3(Q) and
therefore u is not the solution of the weak formulation (2.2)
because the “true solution” should be a function in H3(Q2). The
purpose of this example is to test the convergence of the finite ele-
ment method for the direct mixed formulation and Algorithm 3.1
to the “spurious solution” u in (4.3).

Test case 1. Take Q as the triangle A QQ,0, with Q(0,0),
0,(16,0) and Q,(-8, 8\/3). The domain Q with the initial mesh
is shown in Figure 3a, and the “spurious solution” u is shown in
Figure 3b. Here, w = 20,00, = 2?” e (%,ﬂ').

The direct mixed finite element solution u and the difference
|u — ”10| are shown in Figure 3c,d, respectlvely The error ||ju —
u7 I 1) is shown in Table 4. These results indicate that the direct
mixed finite element solution converges to the “spurious solu-
tion” u ¢ H3(Q). On the other hand, since o = 2?” € (g, ), SO it
follows N =1 in Algorithm 3.1 by checking Table 1. The solu-
tion u#, from Algorithm 3.1and the difference [u — uf; | are shown
in Figure 3e,f, respectively. The error |lu — u;f‘ll Hg) 1S shown in
Table 4. These results imply that the solution of Algorithm 3.1
does not converge to the “spurious solution”, since the solution
of Algorithm 3.1 converges to the solution in H3(Q) as stated in
Theorem 2.17.

Test case 2. Here, we consider the domain Q to be the
polygon with vertices Q(0,0), Q (m—‘ﬁ 0), Q2(16 8Y2 16— 8\[

1437 1+\f
8v2), 05(-8 %2 S\f g L2 >a nd Q,(~%,-4/3). Then

we have w = LQ QQ4 ~ 1.3837 e (m, 7). The domain Q with
the initial mesh is shown in Figure 4a, and the “spurious solu-
tion” u is shown in Figure 4b.

The direct mixed finite element solution ui’o and the differ-

ence |u— ufol are shown in Figure 4c,d, respectively. The error
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TABLE4 | The H' error of the numerical solutions on quasi-uniform meshes.
j=7 j=8 ji=9 J=10
|lu— uf.] ||H1(Q) 2.74964¢-01 1.35594e-01 6.77391e-02 3.38605e-02
|lu— u;‘ ||H1(Q) 6.07564 6.02331 6.00958 6.00306
Initial mesh soluiort i P, approximation u, after 10 mesh refinements .
P, approximation uf, after 10 mesh refinements
()
FIGURE4 | Example 4.1 Test case 2: (a) the domain and the initial mesh; (b) the “spurious solution” u; (c) the direct mixed finite element solution
ui’o; (d) the difference |u — ui’o| (e) the solution u o from Algorithm 3.1; (f) the difference |u — u10|.
TABLES5 | The H' error of the numerical solutions on quasi-uniform meshes.
J=7 j=3 j=9 j=10
|lu — uf’ I HY(Q) 1.43517e-01 7.44186e-02 3.94988e-02 2.13310e-02
|lu — uf 1 H(Q) 4.08611 4.08457 4.08383 4.08329

||u — uf’ Il ;11 is shown in Table 5. These results imply that the
direct mixed finite element solution converges to the “spurious
solution” u ¢ H3(Q). On the other hand, since o € (, 37”), we
have N =2 in Algorithm 3.1. The solution uf;, of Algorithm 3.1
and the difference |u — u?| ol are shown in Flgure 4e.f, respectively.
The error |ju —u ; Al 11 is shown in Table 5. These results imply
that the solution of Algorithm 3.1 does not converge to the “spu-
rious solution.”

Test case 3. Consider the polygonal domain Q with

16\/7 16-8v2 16-8v2
00,0,  0:(*2.0, O EEE 48V,

23 2v3
Q3(—8\ﬁ+—j,8\/§—8{:j) and Q,(4,-84/3). Then we
v v

vertices

have w = 20,00, ~ 1.5897 € (3—2”, 27). The domain Q with the
initial mesh is shown in Figure 5a, and the “spurious solution” u
is shown in Figure 5b.

The direct mixed finite element solution ”10 and the differ-
ence |u— u%| are shown in Figure 5c,d, respectively. The error
[lu— u;/|| Hiq) 1 shown in Table 6. These results continue to
indicate that the direct mixed finite element solution con-
verges to the “spurious solution” u ¢ H3(Q). On the other
hand, since w € (3—” 2r), it follows N =3 in Algorithm 3.1.
The solution uf) of Algorithm 3.1 and the difference |u—
ufol are shown in Figure 5e,f, respectively. The error |lu—
uj’.‘|| i is shown in Table 6. These results confirm that the
solution of Algorithm 3.1 does not converge to the “spurious
solution.”

Example 4.2. We solve the triharmonic problem in
Example 4.1 again using the direct mixed finite element method
and Algorithm 3.1 on quasi-uniform meshes. Here, we take
the solution u,, of the following Poisson problem as the exact
solution,
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FIGURE5 | Example 4.1 Test Case 3: (a) the domain and the initial mesh; (b) the “spurious solution” u; (c) the direct mixed finite element solution
u¥; (d) the difference |u — u¥|; (e) the solution uf}, from Algorithm 3.1; (f) the difference |u — u},|.
TABLE6 | The H! error of the numerical solutions on quasi-uniform meshes.
J=7 j=3 j=9 j=10
[lu— uj’ 111 1.474223e-01 8.67096e-02 5.25520e-02 3.25455e-02
[lu— u;.“llﬂl(m 3.863711 3.85981 3.85832 3.85767
N From Test case 2 to Test case 4, we will use the finite element
= Auy = fo = Zci‘ff inQ,  u, =0o0n0dQ (4.5)  method solution u,,, (instead of using the complicated notation

where
fo= —A(ﬁ(r; o, Ryr'e Siﬂ(%‘g)) € H;(Q).

with 7(r; 7, R) given in (4.4), o, given in (2.18), and ¢, is the solu-
tion of the linear system (2.39). Note that the function f, = —Au
foruin (4.3). By Lemma 2.12, we have u,, € H3(Q) and it satisfies

N
—Au,, = —A*(Au,) = A*f, — ZciAzai = A%f, = —A*(Au)

i=1

=—-A(A(Aw) = f,

where we have used the result in Lemma 2.8. Here, the source
term f is the same as that in Example 4.1. The purpose of this
example is to test the convergence of the direct mixed finite ele-
ment method and Algorithm 3.1 to the exact solution u,, in (4.5).

U,y np1) Of (4.5) on mesh 7, ., as an approximation of u,,.

Test case 1. Take Q as the triangle A 00, Q, with Q(0, 0), O,(8,0)
and Q2(4,4\/§). In this case, the exact solution u,, =u for a
given u in (4.3), and its contour is given in Figure 6a. Here,
w= 20,00, = % € (0, %). Thus, Algorithm 3.1 coincides with
the direct mixed finite element method. The solution u{‘o(z ui’o)
from Algorithm 3.1 and the difference |u — u{‘ol are shown in
Figure 6b,c, respectively. The error ||u — uj‘ll i and conver-
gence rate R are shown in Table 7. These results show that the
solution of Algorithm 3.1 converges to the exact solution in the
optimal convergence rate R = 1, which coincides with the result
in Theorem 3.13 or Table 3.

Test case 2. We consider the same domain and initial mesh
(see Figure 3a) as Test case 1 in Example 4.1. Note that o =
20,00, = 2?” € (%,rr). The finite element solution u,,, of the
exact solution u,, is shown in Figure 7a. The direct mixed
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The exact solution u

p! approximation "1“0 after 10 mesh refinements |"'"1Ao|

A

FIGURE 6 | Example 4.2 Test case 1: (a) the exact solution u; (b) the solution u{‘o from Algorithm 3.1; (c) the difference |u — uf|.
TABLE7 | The H' error and convergence rate R for Example 4.2 Test case 1.
j=5 j=6 j=7 j=3
|lu — u;‘ ||H1(Q) 1.09202 5.45465e-01 2.72663e-01 1.36323e-01
R — 1.00 1.00 1.00
The exact solution approximation u,_ IR |

(a)
FIGURE7 | Example 4.2 Test case 2: (a) the exact solution approximation u; (b) the difference |u,,,
TABLES8 | The H! error of the numerical solutions on quasi-uniform
meshes.
Jj=6 j=7 Jj=38 Jj=9
Netoxy = 4 sy 5:98206 6.01120 6.00363 5.99948

—uJ’.*llHl(Q) 5.67208e-02 1.47272e-02 6.62074e-03 3.43917e-03

||ue.‘(ﬂ

finite element solution u{; and the difference |u,,, —ulj| are

shown in Figures 3c and 7b, respectively. The error ||u,,, —
uﬁ’ l111) is shown in Table 8. These results indicate that the
direct mixed finite element solution does not converge to the
exact solution. Note that N =1 in Algorithm 3.1, the solution
ufi, from Algorithm 3.1 and the difference |u,,, — uZ| are shown
in Figures 3e and 7c, respectively. The error ||u,,, — u}“ll HI(©Q)
is shown in Table 8. These results imply that the solution of
Algorithm 3.1 converges to the exact solution.

Test case 3. We consider the same domain and initial mesh
(see Figure 4a) as Test case 2 in Example 4.1. Recall that @ =
20,00, ~ 1.3837 € (x, 37”). The exact solution u,,, is shown in
Figure 8a. The direct mixed finite element solution 4!}, and the
difference |u,,, — u}| are shown in Figures 4c and 8b, respec-
tively. The error ||u,,, — uf.] l111) is shown in Table 9. These
results indicate that the direct mixed finite element solution
does not converge to the exact solution. Note that N =2 in

—uh

U . 5
— ujy; (c) the difference |u ol

exn

Algorithm 3.1 in this case. The solution ulAO of Algorithm 3.1
and the difference |u,,, — uf| are shown in Figures 4e and 8c,
respectively. The error ||u,,, — uj‘.‘ Il 171y is shown in Table 9. These
results also imply that the solution of Algorithm 3.1 converges to
the exact solution.

exn

Test case 4. We consider the same domain and initial mesh
(see Figure 5a) as Test case 3 in Example 4.1. Recall that
w=20,00,~1.5897 € (37”, 2r). The approximation u,,, of
the exact solution is shown in Figure 9a. The direct mixed finite
element solution uY and the difference |u,,, —u%| are shown
in Figures 5c and 9b, respectively. The error |lu,,, — u} |l ;)
is shown in Table 6. These results continue to indicate that
the direct mixed finite element solution does not converge
to the exact solution. Note that N =3 in Algorithm 3.1, the
solution uf of Algorithm 3.1 and the difference |u,,, — uf|
are shown in Figures 5e and 9c, respectively. The error
[7—— u;‘|| Hiq) is shown in Table 10. These results confirm
that the solution of Algorithm 3.1 converges to the exact

solution.

Example 4.3. In this example, we investigate the conver-
gence of Algorithm 3.1 by considering equation (1.1) with f =
sin(%@) on different domains with angle @ categorized in
Theorem 3.13 or Table 3, where N is shown in Table 1. For
w < %, the numerical test on convergence rate can be found in
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FIGURE 8 | Example 4.2 Test case 3: (a) the exact solution u; (b) the difference |u,,, — “%’o [; (c) the difference |u,,, — uf,|.
TABLE9 | The H! error of the numerical solutions on quasi-uniform meshes.
Jj=6 Jj=17 Jj=38 Jj=9
ety — uf.] ||H1<Q) 9.67666 9.64665 9.63404 9.63164
|7 14;.‘ ||H1(Q) 5.27303e-02 2.09405e-02 1.01081e-02 4.20655e-03
The exact solution approximation Wi U™ 1o| Ju '“?ol
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FIGURE9 | Example 4.2 Test case 4: (a) the exact solution u; (b) the difference |,
TABLE10 | The H' error of the numerical solutions on
quasi-uniform meshes.
j=6 Jj=17 j=38 ji=9
Ity =W llr) 747470 698223 6.60342  6.31031
ltps = 4|l 1y 6.79611€-01 4.98616e-01 3.78626e-01 2.93364¢-01

Example 4.2Test case 1. In the rest of this example, we focus on
w>Z.
2

Test case 1. Take Q as the triangle A 00,0, with 0(0,0),
0,(16,0) and Q,(16x,,16

vergence rates for different w = 20,00, € (%, ) determined by

choosing different x,, are shown in Table 11. Here, R = %, r=1

are used when x, = —0.8, and default values are used for othesr
cases. The results show that the convergence rate is not opti-
mal when w < 2?", and it is optimal when w € [%”,n). These
results are consistent with the expected convergence rate R in
Theorem 3.13 or Table 3 for w € (%, ).

y/1 —x2) for some |x,| < 1. The con-

exn

u¥1; () the difference |u

A
exn — Uqpl-

Test case 2. We consider the polygon Q with vertices Q(0, 0),
0,(16,0), O,(-8, 8\/5), and Q;(—8, -8y, \/g) for some y, €
(0, 1], which gives @ = 20,00, € (x, %]. We then consider the
domain Q (see Figure 5a) presented in Example 4.1 Test case 2,

and the corresponding angle w € (4’” 3”) The convergence rates

for different w € (x, 7) are shown in Table 12. The results show
that the convergence rate is not optimal when w < 4—” and it

is optimal when w € [4’” 3”) These results are consmtent with

the expected convergence rate in Theorem 3.13 or Table 3 for
® € (r, ).

Test case 3. We consider the polygon Q with vertices 0(0,0),

0,(45.0), 0, M g/ 0 -8 Y2E 53
8\/15:3 —84/3) for some x, e(0,8\/§], which

371 T

generates w=20,00,€ (
different w € (7, 27) are shown in Table 13. These results are
consistent with the expected convergence rate in Theorem 3.13
or Table 3 forw € (37”, 27).

] The convergence rates for
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TABLE11 | The H! error forw € (%, x) on quasi-uniform meshes.
Parameter x, ® Expected rate ji=17 j= j= j=10
-0.2 =~ 0.564097 0.46 0.75 0.67 0.59 0.54
-0.4 =~ 0.630997 0.83 0.96 0.95 0.94 0.93
-0.5 2?” 1.00 1.03 1.01 1.00 1.00
—0.6 =~ 0.70483x 1.00 1.01 1.01 1.01 1.00
-0.8 =~ 0.79517x 1.00 1.02 1.01 1.01 1.00
TABLE12 | The H' error for o € (r, 37”) on quasi-uniform meshes.
Parameter y, or domain ® Expected rate j=6 j=7 Jj= Jj=
0.2 ~ 1.106157 0.38 0.82 0.72 0.62 0.53
0.6 ~ 1.256127 0.82 0.96 0.95 0.94 0.93
0.8 =~ 1.30101x 0.93 0.98 0.98 0.98 0.98
1.0 4?” 1.00 1.00 1.00 1.00 1.00
Q in Figure 5a ~ 1.383057 1.00 1.02 1.02 1.01 1.01
TABLE13 | The H! error for o € (37”, 27) on quasi-uniform meshes.
x; or domain ® Expected rate Jj= Jj= Jj= Jj=
x; =4 ~ 1.58946x 0.23 0.87 0.76 0.63 0.50
x, =8 = 0.40 0.83 0.75 0.65 0.60
X, = 8\/§ %” 0.57 0.87 0.82 0.77 0.71
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