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ABSTRACT
In this paper, we investigate a sixth-order elliptic equation with the simply supported boundary conditions in a polygonal domain.
We propose a new method that decouples the sixth-order problem into a system of second-order equations. Unlike the direct
decomposition, which yields three Poisson problems but is restricted to polygonal domains with the largest interior angle no more
than 𝜋∕2, we rigorously analyze and construct extra Poisson problems to confine the solution into the same function space as that
of the original sixth-order problem. Consequently, the proposed method can be applied to general polygonal domains. In turn,
we also present a 𝐶0 finite element algorithm to discretize the new resulting system and establish optimal error estimates for the
numerical solution on quasi-uniform meshes. Finally, numerical experiments are performed to validate the theoretical findings.
MSC2020 Classification: 65N12, 65N30, 35J40

1 | Introduction

Consider the sixth-order elliptic problem, also known as the tri-
harmonic problem

− Δ3𝑢 = 𝑓 in Ω, 𝑢 = Δ𝑢 = Δ2𝑢 = 0 on 𝜕Ω (1.1)

where Ω ⊂ ℝ2 is a polygonal domain and 𝑓 ∈ 𝐻−1(Ω). The
boundary conditions in (1.1) are commonly referred to as sim-
ply supported boundary conditions [1]. The sixth-order partial
differential equations (PDEs) arise from various mathematical
models, including applications in differential geometry [2], thin
film equations [3], and the phase field crystal model [4–7]. The
conforming finite element approximation for (1.1) necessitates
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𝐻3 conforming finite elements, typically involving intricate con-
structions of the finite element space and the variational formu-
lation [8–11]. Recently, a nonconforming𝐻3 finite element was
proposed in [12], where the element is composed of𝐻1 conform-
ing finite elements and additional bubble functions. 𝐶0 interior
penalty discontinuous Galerkin (IPDG) and 𝐶1-IPDG methods
were proposed in [13] for the sixth-order elliptic equations with
clamped boundary conditions. To balance the weak continuity
and the complexity associated with choosing penalty parame-
ters, a family of 𝑚 interior nonconforming finite element meth-
ods was proposed in [14]. Additionally, a mixed finite element
method was introduced in [1], based on low-order 𝐻1 conform-
ing finite elements, with an optimal error estimate under an
appropriate regularity assumption.
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The direct mixed finite element method, employing 𝐶0 finite ele-
ments, offers an appealing approach for addressing high-order
elliptic problems, such as the biharmonic problem [15–18] and
the sixth-order problem (1.1). This is primarily due to the bound-
ary conditions, which facilitate the derivation of three entirely
decoupled Poisson equations. This suggests that a plausible
numerical solution could be attained by simply employing a finite
element Poisson solver within the mixed formulation. However,
while the implementation of the mixed finite element method is
straightforward, its solution may not always be reliable, as the
solution obtained from the Poisson problem might reside in a dif-
ferent Sobolev space compared to that of the original sixth-order
problem (1.1). This discrepancy is evident in the fact that the solu-
tion to the Poisson problem typically belongs to 𝐻1(Ω), whereas
that of the sixth-order problem (1.1) usually belongs to 𝐻3(Ω).
This phenomenon was identified in the context of the bihar-
monic equation with Navier boundary conditions, known as the
Sapongyan paradox [19, 20]. To confine the solution of the Pois-
son problem to 𝐻2(Ω), an additional Poisson problem needs to
be solved [15], particularly when the polygonal domain features
a re-entrant corner. For the sixth-order problem (1.1), achieving
confinement of the solution to𝐻3(Ω) is not a trivial task.

The direct mixed formulation, which decomposes the problem
into three Poisson equations, actually defines a weak solution in
a larger function space compared to that of Equation (1.1). This
mismatch in function spaces does not impact the solution in a
polygonal domain where the largest interior angle is no more
than 𝜋∕2. However, when the largest interior angle exceeds 𝜋∕2,
the direct mixed method allows for additional singular functions,
leading to a solution different from that of Equation (1.1). To
confine the solution to the correct function spaces, we propose
a modified mixed formulation aiming at eliminating the singu-
lar functions. More specifically, we first rigorously establish that
the space of the singular functions, or equivalently, their image
space under the Laplace operator, is finite-dimensional. In par-
ticular, the dimension of the singular function space associated
with a corner depends on the corresponding interior angle: it is
0 if the angle lies in (0, 𝜋∕2], 1 if in (𝜋∕2, 𝜋), 2 if in (𝜋, 3𝜋∕2], and
3 if in (3𝜋∕2, 2𝜋). Subsequently, we identify a basis for the sin-
gular function space, or equivalently, its image space. Finally, we
formulate the modified mixed formulation by removing the solu-
tion component that resides in the singular function space. The
resulting formulation is shown to be well-posed, and the solution
is equivalent to the original problem.

In turn, we introduce a numerical algorithm to solve the proposed
mixed formulation, utilizing piecewise linear 𝐶0 finite elements
on quasi-uniform meshes. Meanwhile, we conduct an error anal-
ysis on the finite element approximations for both the auxiliary
functions and the solution 𝑢. For the auxiliary functions, the
errors in the𝐻1 norm are standard and have a convergence rate
ℎ

min{ 𝜋
𝜔
,1}, where 𝜔 is the largest interior angle of the polygonal

domain; the 𝐿2 error estimates can be obtained using the dual-
ity argument. For the approximation to the solution 𝑢, the error
in the 𝐻1 norm is bounded by (i) the 𝐻1 interpolation error of
the solution 𝑢; (ii) the 𝐻−1 error for the auxiliary functions; and
(iii) the 𝐻1 errors and the weighted 𝐿2 error for the approxima-
tions to the additional intermediate Poisson problems that con-
fine the solution to the correct function space. Depending on the

largest interior angle, the convergence rate for the 𝐻1 error of
the numerical solution is dominated by either the degree of the
polynomials or the singularity of the intermediate functions.

In summary, we propose a 𝐶0 finite element algorithm that
reduces the sixth-order problem with simply supported boundary
conditions to a system of second-order equations. The key contri-
butions of this work are outlined as follows:

• Compared to existing penalty methods and nonconforming
approaches, the proposed method is simple and intuitive in
its formulation, and a plausible numerical solution can be
obtained using only a standard 𝐶0 finite element Poisson
solver.

• The direct mixed formulation, which decomposes the orig-
inal problem into three Poisson problems, fails to maintain
equivalence with the original problem when the largest inte-
rior angle exceeds 𝜋∕2. In contrast, by carefully confining
the intermediate functions to the appropriate function space,
the proposed method remains valid for general polygonal
domains, regardless of whether any interior angle exceeds
𝜋∕2 or not.

• We rigorously derive optimal error estimates for the pro-
posed method on quasi-uniform meshes using 𝐶0 linear
finite element polynomials.

• Based on the largest interior angle of the domain, we con-
duct numerical tests to compare the solutions obtained from
the direct mixed finite element method and the proposed
method. In addition, we evaluate the convergence rate of the
proposed method.

The rest of the paper is organized as follows: In Section 2,
according to the general regularity theory for second-order ellip-
tic equations [21–25], we introduce the weak solution of the
sixth-order problem (1.1). Additionally, we discuss the orthogo-
nal space of the image of the operator −Δ in 𝐻1

0 (Ω) and iden-
tify basis functions of this space. We then propose a modified
mixed formulation and demonstrate the equivalence of the solu-
tion to that of the original sixth-order problem. In Section 3, we
present the finite element algorithm and derive error estimates
on quasi-uniform meshes for both the solution 𝑢 and the auxiliary
functions. Finally, in Section 4, we present numerical test results
to validate the theory.

Throughout the paper, the generic constant 𝐶 > 0 in our esti-
mates may vary across different occurrences. Its value depends on
the computational domain but remains independent of the func-
tions involved or the mesh level in the finite element algorithms.

2 | The Sixth Order Problem

2.1 | Well-Posedness of the Solution

Denote by 𝐻𝑚(Ω), 𝑚 ≥ 0, the Sobolev space consisting of func-
tions whose 𝑖th derivatives are square integrable for 0 ≤ 𝑖 ≤ 𝑚.
Let 𝐿2(Ω) ∶= 𝐻0(Ω). If 𝑚 is not an integer, then it defines
the fractional Sobolev space. Denote by (Ω) the space of
infinitely differentiable functions in Ω with compact support.

2 of 22 Numerical Methods for Partial Differential Equations, 2025
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We define𝐻𝑠
0 (Ω) to be the closure of (Ω) in𝐻𝑠(Ω). Recall that

𝐻𝑠
0 (Ω) ⊂ 𝐻

𝑠(Ω) for 0 < 𝑠 ≤ 1 is the subspace consisting of func-
tions with zero traces on the boundary 𝜕Ω [26]. We shall denote
the norm || ⋅ ||𝐿2(Ω) by || ⋅ || when there is no ambiguity about the
underlying domain. Recall that for 𝐷 ⊆ ℝ𝑑 , the fractional order
Sobolev space𝐻𝑠(𝐷) consists of distributions 𝑣 in𝐷 satisfying

||𝑣||2
𝐻𝑠(𝐷) ∶= ||𝑣||2

𝐻𝑚(𝐷) +
∑
|𝛼|=𝑚∫𝐷 ∫𝐷

|𝜕𝛼𝑣(𝑥) − 𝜕𝛼𝑣(𝑦)|2|𝑥 − 𝑦|𝑑+2𝑡 𝑑𝑥𝑑𝑦 < ∞,

where 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ ℤ𝑑≥0 is a multi-index such that
𝜕𝛼 = 𝜕𝛼1

𝑥1
. . . 𝜕

𝛼𝑑
𝑥𝑑

and |𝛼| = ∑𝑑

𝑖=1𝛼𝑖.

We define the space

𝑉 = {𝜙 | 𝜙 ∈ 𝐻3(Ω), 𝜙|𝜕Ω = 0, Δ𝜙|𝜕Ω = 0} (2.1)

then the variational formulation for Equation (1.1) is to find 𝑢 ∈
𝑉 such that,

𝑎(𝑢, 𝜙) ∶= ∫Ω
∇Δ𝑢 ⋅ ∇Δ𝜙𝑑𝑥 = ∫Ω

𝑓𝜙𝑑𝑥 = (𝑓, 𝜙), ∀𝜙 ∈ 𝑉

(2.2)
For (2.2), we have the following result:

Lemma 2.1. Given 𝑓 ∈ 𝐻−1(Ω) for the variational formula-
tion (2.2), there exists at most one solution in 𝑉 .

Proof. We postpone the proof of the existence of the solution to
Theorem 2.17. Assume that (2.2) has two solutions 𝑢1 and 𝑢2 in
𝑉 . Let 𝛿𝑢 = 𝑢1 − 𝑢2. Then we have

𝑎(𝛿𝑢, 𝜙) = 0, 𝜙 ∈ 𝑉 (2.3)

Note that 𝛿𝑢 ∈ 𝑉 implies Δ𝛿𝑢 ∈ 𝐻1
0 (Ω). In addition 𝛿𝑢 ∈

𝐻2(Ω) ∩𝐻1
0 (Ω). Then, by the Poincaré-type inequality,

||∇Δ𝛿𝑢|| ≥ 𝐶0||Δ𝛿𝑢||𝐻1(Ω) ≥ 𝐶0||Δ𝛿𝑢|| ≥ 𝐶||𝛿𝑢||𝐻2(Ω),

where ([21], Theorem 2.2.3) has been used in the last inequality.
By setting 𝜙 = 𝛿𝑢 in (2.3), it follows

0 = 𝑎(𝛿𝑢, 𝛿𝑢) = ||∇Δ𝛿𝑢||2 ≥ 𝐶||𝛿𝑢||𝐻2(Ω) = 0.

Thus 𝛿𝑢 = 0, which implies 𝑢1 = 𝑢2 in𝐻2(Ω), and therefore 𝑢1 =
𝑢2 in 𝑉 . ◽

2.2 | The Direct Mixed Formulation

Intuitively, we can decouple (1.1) into a system of three Poisson
problems by introducing auxiliary functions 𝑤 and 𝑣, satisfying:{

−Δ𝑤 = 𝑓 in Ω,
𝑤 = 0 on 𝜕Ω;

{
−Δ𝑣 = 𝑤 in Ω,
𝑣 = 0 on 𝜕Ω;

and

{
−Δ𝑢̄ = 𝑣 in Ω,
𝑢̄ = 0 on 𝜕Ω.

(2.4)

We refer to (2.4) as the direct mixed formulation. Note that
numerical solvers for the Poisson problems (2.4) are readily avail-
able, while numerical approximation of the sixth-order problem

(1.1) is generally a daunting task. The weak formulation of (2.4)
is to find 𝑢̄, 𝑣, 𝑤 ∈ 𝐻1

0 (Ω) such that

𝐴(𝑤,𝜙) = (𝑓, 𝜙), ∀𝜙 ∈ 𝐻1
0 (Ω) (2.5a)

𝐴(𝑣, 𝜓) = (𝑤,𝜓), ∀𝜓 ∈ 𝐻1
0 (Ω) (2.5b)

𝐴(𝑢̄, 𝜏) = (𝑣, 𝜏), ∀𝜏 ∈ 𝐻1
0 (Ω) (2.5c)

where
𝐴(𝜙, 𝜓) = ∫Ω

∇𝜙 ⋅ ∇𝜓𝑑𝑥.

Assuming that the source term 𝑓 in (2.5) and (2.2) satisfies 𝑓 ∈
𝐻−1(Ω) ⊂ 𝑉 ∗, the solutions 𝑢̄, 𝑣, 𝑤 of the Poisson problems in
(2.5) are well-defined [27]. The important question is whether the
solution 𝑢̄ in (2.5) is the same as the solution 𝑢 in (2.2).

To address this question, it is imperative to delve into the solution
structure of the Poisson problem within a polygonal domain. This
exploration will be undertaken in the subsequent subsection.

2.3 | Image of the Laplace Operator in 𝑯1
0 (𝛀)

and Its Orthogonal Space

Assume that the polygonal domain Ω has at most one interior
angle greater than 𝜋

2
. Let 𝜔 be the largest interior angle with

the vertex 𝑄. Without loss of generality, we set 𝑄 as the origin
and represent polar coordinates centered at the vertex𝑄 as (𝑟, 𝜃),
where the interior angle 𝜔 is spanned by two half lines 𝜃 = 0 and
𝜃 = 𝜔. We construct a sector 𝐾𝑅

𝜔
⊂ Ω at 𝑄 with radius 𝑅 > 0 as

𝐾𝑅
𝜔
= {(𝑟 cos 𝜃, 𝑟 sin 𝜃) ∈ Ω | 0 < 𝑟 < 𝑅, 0 < 𝜃 < 𝜔}.

A sketch drawing of the domain Ω is depicted in Figure 1.

To begin with, we introduce a general Poisson problem

− Δ𝑧 = 𝑔 in Ω, 𝑧 = 0 on 𝜕Ω (2.6)

Recall the space 𝑉 in (2.1). For any function 𝜙 ∈ 𝑉 , it can be ver-
ified that −Δ𝜙 ∈ 𝐻1

0 (Ω). Then we have the following result.

Lemma 2.2. The mapping−Δ ∶ 𝑉 → 𝐻1
0 (Ω) is injective and

has a closed range, where the subspace 𝑉 is given in (2.1).

Proof. Let 𝑧1, 𝑧2 be functions in 𝑉 ⊂ 𝐻1
0 (Ω) satisfying Δ𝑧1 =

Δ𝑧2. Then the function 𝑔 = −Δ𝑧1 = −Δ𝑧2 ∈ 𝐻1
0 (Ω). By the

Lax–Milgram Theorem for the Poisson problem (2.6), it follows

FIGURE 1 | Domain Ω containing a reentrant corner.

Numerical Methods for Partial Differential Equations, 2025 3 of 22
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𝑧1 = 𝑧2 in 𝐻1
0 (Ω), and hence 𝑧1 = 𝑧2 in 𝑉 , demonstrating the

injective nature of the mapping.

Denote the image of the mapping by  ⊂ 𝐻1
0 (Ω). Consider a

sequence {𝑔𝑖}∞𝑖=1 in  satisfying 𝑔𝑖 ∶= −Δ𝑧𝑖 → 𝑔 for 𝑧𝑖 ∈ 𝐻3(Ω),
which implies that 𝑔𝑖 ∈  is Cauchy and 𝑔 ∈ 𝐻1

0 (Ω). We now
show  is closed, namely, 𝑔 ∈ . By the regularity result for
the elliptic equation, it holds

||𝑧𝑚 − 𝑧𝑛||𝐻3(Ω) ≤ 𝐶||𝑔𝑚 − 𝑔𝑛||𝐻1(Ω) (2.7)

which implies {𝑧𝑖}∞𝑖=1 is also Cauchy in 𝑉 . Since the subspace
𝑉 is complete, it follows 𝑧𝑖 → 𝑧 ∈ 𝑉 , thus −Δ𝑧𝑖 → −Δ𝑧 ∈ .
Namely, 𝑔 = −Δ𝑧 ∈ . Therefore, the space  is closed. ◽

Recall the image  of the mapping −Δ in 𝐻1
0 (Ω). Let ⊥ be

its orthogonal complement in 𝐻1
0 (Ω). Namely, for any function

𝑣 ∈ 𝐻1
0 (Ω), there exist unique 𝑣 ∈  and 𝑣⊥ ∈ ⊥ such that

𝑣 = 𝑣 + 𝑣⊥ (2.8)

and
(∇𝑣,∇𝑣⊥) = 0 (2.9)

In other words, ⊕⊥ = 𝐻1
0 (Ω). By the definition of , the

condition (2.9) is equivalent to

(∇Δ𝑧,∇𝑣⊥) = 0, ∀𝑧 ∈ 𝑉 .

In the following, we will show that the space ⊥ is
finite-dimensional, allowing for the determination of its basis.

Denote the 𝓁th side of 𝜕Ω by Γ𝓁 , where Γ𝓁 is open. For ∀𝜙, 𝜓 ∈
𝐻4(Ω), Green’s formula gives

∫Ω
𝜙Δ2𝜓𝑑𝑥 − ∫Ω

Δ2𝜙𝜓𝑑𝑥

=
∑
𝓁

∫Γ𝓁

𝜙𝜕n(Δ𝜓) − 𝜕n𝜙Δ𝜓 + Δ𝜙𝜕n𝜓 − 𝜕n(Δ𝜙)𝜓𝑑𝑠, (2.10)

where n is the outward normal derivative.

We denote by (Ω) the space of infinitely differentiable func-
tions with compact support inΩ. Then we can show the following
result.

Lemma 2.3. A function 𝑣 belongs to ⊥ if and only if 𝑣 ∈
𝐻1

0 (Ω) is the solution of the following (adjoint) boundary value
problem

Δ2𝑣 = 0 in Ω, 𝑣 = 0, Δ𝑣 = 0 on 𝜕Ω (2.11)

Proof. (⇒) By (2.9), it holds for ∀𝑣 ∈ ⊥ and 𝑧 ∈ 𝑉 ,

(−∇Δ𝑧,∇𝑣) = 0 (2.12)

In particular, for ∀𝑧 ∈ (Ω) ⊂ 𝑉 ,

(−∇Δ𝑧,∇𝑣) = 0 = (𝑧,Δ2𝑣), (2.13)

which implies Δ2𝑣 = 0 in Ω.

Define 𝐷(Δ2,𝐻−1(Ω)) to be the maximal extension of the bihar-
monic operator in𝐻1

0 (Ω):

𝐷(Δ2,𝐻−1(Ω)) ∶= {𝑣 ∈ 𝐻1
0 (Ω) ∶ Δ2𝑣 ∈ 𝐻−1(Ω)}.

Note that 𝑣 ∈ ⊥ ⊂ 𝐷(Δ2,𝐻−1(Ω)). Now, suppose 𝑣 ∈ 𝐻4(Ω) ∩
⊥. By Green’s formula, it holds for 𝑧 ∈ 𝑉 ,

(−∇Δ𝑧,∇𝑣) = 0 = (𝑧,Δ2𝑣) −
∑
𝓁

∫Γ𝓁

𝑧𝜕n(Δ𝑣) − 𝜕n𝑧Δ𝑣

+ Δ𝑧𝜕n𝑣𝑑𝑠. (2.14)

Then (2.13), (2.14) together with the boundary condition 𝑧 =
Δ𝑧 = 0 on every Γ𝓁 yields the boundary value condition Δ𝑣 = 0
on Γ𝓁 . Given that 𝐻4(Ω) is dense in 𝐷(Δ2,𝐻−1(Ω)) [26], the
density argument asserts that the same boundary condition also
holds for any 𝑣 ∈ ⊥ ⊂ 𝐻1

0 (Ω). Consequently, (2.11) holds.

(⇐) For 𝑣 ∈ 𝐻1
0 (Ω) satisfying (2.11), it follows 𝑣 ∈

𝐷(Δ2,𝐻−1(Ω)). Suppose 𝑣 ∈ 𝐻4(Ω) ∩𝐷(Δ2,𝐻−1(Ω)). By (2.11)
and Green’s formula, (2.14) also holds for ∀𝑧 ∈ 𝑉 . Since𝐻4(Ω) is
dense in 𝐷(Δ2,𝐻−1(Ω)), the equality (−∇Δ𝑧,∇𝑣) = 0 also holds
for 𝑣 ∈ 𝐷(Δ2,𝐻−1(Ω)) and implies 𝑣 ∈ ⊥. ◽

One of the main goals of this section is to show that ⊥ is finite
dimensional and to identify the basis of ⊥. Next, we introduce
some pertinent functions in the domain Ω.

Definition 2.4. Given 𝑅 > 0 such that 𝐾𝑅
𝜔
⊂ Ω. Let 𝑁 ≥ 0

be the largest integer satisfying 𝑁 <
2𝜔
𝜋

with values specified in
Table 1. Additionally, let 𝜏 ∈ (0, 1) be a given parameter. (i) For
1 ≤ 𝑖 ≤ 𝑁 , we define the𝐻−1(Ω) functions,

𝜉𝑖(𝑟, 𝜃; 𝜏, 𝑅) ∶= 𝜒𝑖(𝑟, 𝜃; 𝜏, 𝑅) + 𝜁𝑖(𝑟, 𝜃; 𝜏, 𝑅) (2.15)

where

𝜒𝑖(𝑟, 𝜃; 𝜏, 𝑅) = 𝜂(𝑟; 𝜏, 𝑅)𝑟
− 𝑖𝜋

𝜔 sin
(
𝑖𝜋

𝜔
𝜃

)
, (2.16)

with the cut-off function 𝜂(𝑟; 𝜏, 𝑅) ∈ 𝐶∞(Ω) satisfying 𝜂(𝑟; 𝜏, 𝑅) =
1 for 0 ≤ 𝑟 ≤ 𝜏𝑅 and 𝜂(𝑟; 𝜏, 𝑅) = 0 for 𝑟 > 𝑅, and 𝜁𝑖 ∈ 𝐻1

0 (Ω) is
obtained by solving

− Δ𝜁𝑖 = Δ𝜒𝑖 in Ω, 𝜁𝑖 = 0 on 𝜕Ω (2.17)

(ii) For 1 ≤ 𝑖 ≤ 𝑁 , we define 𝜎𝑖 ∈ 𝐻1
0 (Ω) satisfying

− Δ𝜎𝑖 = 𝜉𝑖 in Ω, 𝜎𝑖 = 0 on 𝜕Ω (2.18)

Remark 2.5. If 𝑁 = 0, both the function sets {𝜉𝑖}𝑁𝑖=1 and
{𝜎𝑖}𝑁𝑖=1 are empty. The functions 𝜉𝑖, 𝑖 = 1, . . . , 𝑁 defined in (2.15)
are not in𝐻1(Ω).

TABLE 1 | The range of 𝜋

𝜔
and the value of 𝑁 for different 𝜔 in

Definition 2.4.

𝝎 (0, 𝝅
2
] ( 𝝅

2
, 𝝅) (𝝅, 3𝝅

2
] ( 3𝝅

2
, 2𝝅)

𝜋

𝜔
(2,∞) (1, 2) ( 2

3
, 1) ( 1

2
,

2
3
)

𝑁 0 1 2 3
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Define𝐷(Δ,𝐻−1(Ω)) to be the maximal extension of the Laplace
operator in𝐻−1(Ω) [26],

𝐷(Δ,𝐻−1(Ω)) ∶= {𝑣 ∈ 𝐻−1(Ω) ∶ Δ𝑣 ∈ 𝐻−1(Ω)}.

For the functions 𝜉𝑖 in Section 2.4, the following properties hold.

Lemma 2.6. Given 𝜂 ∈ 𝐶∞(Ω) in Definition2.4, the functions
𝜉𝑖 ∈ 𝐷(Δ,𝐻−1(Ω)), 𝑖 = 1, . . . , 𝑁 , are uniquely defined and satisfy

− Δ𝜉𝑖 = 0 in Ω, 𝜉𝑖 = 0 on 𝜕Ω (2.19)

Moreover, 𝜉𝑖 depends on the domainΩ, but not on 𝜏 and𝑅. Namely,
for any positive numbers 𝜏1, 𝜏2 and 𝑅1, 𝑅2, it holds

𝜉𝑖(𝑟, 𝜃) ∶= 𝜉𝑖(𝑟, 𝜃; 𝜏1, 𝑅1) = 𝜉𝑖(𝑟, 𝜃; 𝜏2, 𝑅2) (2.20)

Proof. For 𝜒𝑖 given in (2.16) with 1 ≤ 𝑖 ≤ 𝑁 , it can be
verified that 𝜒𝑖 ∈ 𝐶∞(Ω ⧵𝐾𝛿

𝜔
) for any 𝛿 > 0 and 𝜒𝑖 = 0 for

(𝑟 cos 𝜃, 𝑟 sin 𝜃) ∈ Ω ⧵𝐾𝑅
𝜔

. Moreover, Δ𝜒𝑖 = 0 if 𝑟 < 𝜏𝑅 and 𝑟 >
𝑅. These imply that Δ𝜒𝑖 ∈ 𝐶∞(Ω) ⊂ 𝐿2(Ω). Given 𝜂 ∈ 𝐶∞(Ω),
the explicit function 𝜒𝑖 belonging to𝐻−1(Ω) in (2.16) is uniquely
defined, so is Δ𝜒𝑖. In addition, 𝜁𝑖 ∈ 𝐻1

0 (Ω) is uniquely defined
via (2.17). Therefore, 𝜉𝑖 in (2.15) is uniquely defined due to the
uniqueness of 𝜒𝑖 and 𝜁𝑖.

Taking −Δ on both side of (2.15) yields

−Δ𝜉𝑖 = −
(
Δ𝜒𝑖 + Δ𝜁𝑖

)
= 0,

where (2.17) have been applied. In addition, 𝜉𝑖 = 0 on 𝜕Ω is
obtained by 𝜒𝑖 = 0 and 𝜁𝑖 = 0 on 𝜕Ω.

Next, we prove (2.20). By taking 𝛿 ∈ (0,min{𝜏1𝑅1, 𝜏2𝑅2}), it fol-
lows 𝐾𝛿

𝜔
⊂ 𝐾

𝜏1𝑅1
𝜔 ∩𝐾𝜏2𝑅2

𝜔 ⊂ Ω. By (2.16), we have

𝜒𝑖(𝑟, 𝜃; 𝜏1, 𝑅1) − 𝜒𝑖(𝑟, 𝜃; 𝜏2, 𝑅2) = 0, (𝑟 cos 𝜃, 𝑟 sin 𝜃) ∈ 𝐾𝛿
𝜔
.

Recall that 𝜒𝑖(𝑟, 𝜃; 𝜏𝑗 , 𝑅𝑗) ∈ 𝐶∞(Ω ⧵𝐾𝛿
𝜔
), 𝑗 = 1, 2. Then it follows

𝜒𝑖(𝑟, 𝜃; 𝜏1, 𝑅1) − 𝜒𝑖(𝑟, 𝜃; 𝜏2, 𝑅2) ∈ 𝐶∞(Ω).

Since 𝜁𝑖(𝑟, 𝜃; 𝜏𝑗 , 𝑅𝑗) ∈ 𝐻1
0 (Ω), 𝑗 = 1, 2, we have

𝜉𝑖 ∶ = 𝜉𝑖(𝑟, 𝜃; 𝜏1, 𝑅1) − 𝜉𝑖(𝑟, 𝜃; 𝜏2, 𝑅2)

= 𝜁𝑖(𝑟, 𝜃; 𝜏1, 𝑅1) − 𝜁𝑖(𝑟, 𝜃; 𝜏2, 𝑅2)

+
(
𝜒𝑖(𝑟, 𝜃; 𝜏1, 𝑅1) − 𝜒𝑖(𝑟, 𝜃; 𝜏2, 𝑅2)

)
∈ 𝐻1

0 (Ω).

Meanwhile, from (2.19), we have

Δ𝜉𝑖 = Δ𝜉𝑖(𝑟, 𝜃; 𝜏1, 𝑅1) − Δ𝜉𝑖(𝑟, 𝜃; 𝜏2, 𝑅2) = 0 in Ω,

𝜉𝑖 = 0 on 𝜕Ω. (2.21)

By applying the Lax-Milgram Theorem to (2.21), it is established
that 𝜉𝑖 = 0, indicating the validity of (2.20). ◽

Remark 2.7. Lemma 2.6 implies that 𝜉𝑖(𝑟, 𝜃; 𝜏, 𝑅) in Section 2.4
can be replaced by 𝜉𝑖(𝑟, 𝜃). Moreover, the 𝐻−1(Ω) functions
𝜉𝑖(𝑟, 𝜃) ≢ 0, because otherwise we have 𝜒𝑖 = −𝜁𝑖 ∈ 𝐻1

0 (Ω), which
contradicts the fact that 𝜒𝑖 ∉ 𝐻1(Ω).

Subsequently, for the functions 𝜎𝑖 in𝐻1
0 (Ω) defined in Section 2.4,

the following property is satisfied.

Lemma 2.8. The functions 𝜎𝑖 ∈ 𝐷(Δ2,𝐻−1(Ω)), 𝑖 = 1, . . . , 𝑁 ,
in Definition 2.4 are uniquely defined and satisfy

Δ2𝜎𝑖 = 0 in Ω, 𝜎𝑖 = 0, Δ𝜎𝑖 = 0 on 𝜕Ω (2.22)

Proof. Note that 𝜎𝑖 is obtained through the Poisson problem
(2.18) with 𝜉𝑖 as the source term. From Lemma 2.6, 𝜉𝑖 is uniquely
defined, which yields the uniqueness 𝜎𝑖. Applying −Δ to (2.18) in
conjunction with (2.19) yields (2.22). ◽

For both functions 𝜉𝑖 and 𝜎𝑖, we have the following results.

Lemma 2.9. (a) The functions 𝜉𝑖(= Δ𝜎𝑖), 𝑖 = 1, 2, . . . , 𝑁 , are
linearly independent. (b) The functions 𝜎𝑖,∇𝜎𝑖, 𝑖 = 1, 2, . . . , 𝑁 , are
also linearly independent, respectively.

Proof. (a) 𝜉𝑖(𝑟, 𝜃) ≢ 0, because otherwise we have 𝜒𝑖 =
−𝜁𝑖 ∈ 𝐻1

0 (Ω), which contradicts the fact that 𝜒𝑖 ∉ 𝐻1
0 (Ω). We

assume that
𝑁∑
𝑖=1
𝐶𝑖𝜉𝑖 = 0 (2.23)

where 𝐶𝑖, 𝑖 = 1, 2, . . . , 𝑁 are some constants. Plugging (2.15)
into (2.23) gives

𝑁∑
𝑖=1
𝐶𝑖𝜒𝑖 = −

𝑁∑
𝑖=1
𝐶𝑖𝜁𝑖 ∈ 𝐻1

0 (Ω).

Note that 𝜒𝑖 ∉ 𝐻1
0 (Ω), 𝑖 = 1, 2, . . . , 𝑁 . Therefore, it holds

𝑁∑
𝑖=1
𝐶𝑖𝜒𝑖 = 0 (2.24)

Multiplying (2.24) by 𝑟
− 𝜋

𝜔 , we have 𝐶𝑁𝑟
− 𝜋

𝜔 𝜒𝑁 =
−
∑𝑁−1
𝑖=1 𝐶𝑖𝑟

− 𝜋

𝜔 𝜒𝑖 ∈ 𝐻−1(Ω), which contradicts the fact that
𝐶𝑁𝑟

− 𝜋

𝜔 𝜒𝑁 ∉ 𝐻−1(Ω). Thus, it follows 𝐶𝑁 = 0.For 𝑖 = 2, . . . , 𝑁 ,
multiplying (2.24) by 𝑟

− 𝑖𝜋

𝜔 , the same argument yields
𝐶𝑁+1−𝑖 = 0.Thus, 𝜉𝑖, 𝑖 = 1, 2, . . . , 𝑁 , are linearly independent.

(b) We assume
∑𝑁

𝑖=1𝐶
′
𝑖
𝜎𝑖 = 0 for some constants𝐶 ′

𝑖
and apply −Δ

to both sides of the equation, it follows

𝑁∑
𝑖=1
𝐶 ′
𝑖
𝜉𝑖 = 0.

By (a), we have 𝐶 ′
𝑖
= 0, 𝑖 = 1, . . . , 𝑁 , which implies 𝜎𝑖, 𝑖 =

1, 2, . . . , 𝑁 , are linearly independent. The linear independence
of ∇𝜎𝑖 can be proved similarly. ◽

Corollary 2.10. The space span{𝜎𝑖, 𝑖 = 1, . . . , 𝑁} ⊂⊥, and
the dimension of  satisfies dim(⊥) ≥ 𝑁 .

The proof follows from Section 2.3, Lemma 2.8, and Section 2.9.

Lemma 2.11. For any function 𝑣 ∈ 𝐻1
0 (Ω), it holds

⟨𝑣, 𝜉𝑖⟩ = (∇𝑣,∇𝜎𝑖), ∀𝑖 = 1, . . . , 𝑁 (2.25)

Numerical Methods for Partial Differential Equations, 2025 5 of 22
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where 𝜉𝑖 and𝜎𝑖 are given in Section 2.4. In particular, if 𝑣 ∈ , it
holds ⟨𝑣, 𝜉𝑖⟩ = (∇𝑣,∇𝜎𝑖) = 0, ∀𝑖 = 1, . . . , 𝑁 (2.26)

Proof. Multiplying (2.18) by 𝑣 ∈ 𝐻1
0 (Ω) and applying Green’s

formula yield (2.25). Since 𝜎𝑖 ∈ ⊥, (2.26) follows from (2.9). ◽

To determine the dimension of ⊥, we let 𝜆2
𝑖

be the eigenvalues
to the following one dimensional problem

− 𝜕𝜃𝜃𝜙𝑖 = 𝜆2
𝑖
𝜙𝑖 in (0, 𝜔), 𝜙(0) = 𝜙(𝜔) = 0 (2.27)

For 𝑖 ≥ 1, it is clear that when 𝜆𝑖 > 0,

𝜆𝑖 =
𝑖𝜋

𝜔
, 𝜙𝑖 =

√
2
𝜔

sin
(
𝑖𝜋

𝜔
𝜃

)
(2.28)

In addition, we also recall the following result for the Poisson
problem (2.6).

Lemma 2.12. Assume that 𝑔 ∈ 𝐻1(Ω), and 𝜆𝑖 =
𝑖𝜋

𝜔
, 1 ≤ 𝑖 ≤

𝑁 for 𝑁 given in Table 1, is not an integer, namely 𝜔 ≠ 𝜋

2
and

𝜔 ≠ 3𝜋
2

. Then the solution 𝑧 of the Poisson problem(2.6) from the
space 𝐻1+𝛼(Ω) ∩𝐻1

0 (Ω) for 𝛼 < 𝜋

𝜔
possesses the asymptotic repre-

sentation in the neighborhood of 𝑄,

𝑧(𝑥) = 𝑧̃(𝑥) + 𝜂(𝑟)
𝑁∑
𝑖=1
𝑑𝑖(𝑖𝜋)

− 1
2 𝑟

𝑖𝜋

𝜔 sin
(
𝑖𝜋𝜃

𝜔

)
(2.29)

where 𝑧̃(𝑥) ∈ 𝐻3(Ω) ∩𝐻1
0 (Ω) and the coefficients 𝑑𝑖 are defined by

𝑑𝑖 = ⟨𝑔, 𝜉𝑖⟩, 𝑖 = 1, . . . , 𝑚 (2.30)

Moreover, it follows that

||𝑧̃||𝐻3(Ω) +
𝑁∑
𝑖=1

|𝑑𝑖| ≤ 𝐶||𝑔||𝐻1(Ω) (2.31)

Proof. The proof can be found in Theorem 3.4 in [25] and
Section 2.7 in [21]. ◽

Based on Section 2.12, we can identify the dimension of ⊥ as
follows.

Lemma 2.13. Under the condition in Section 2.12. The dimen-
sion of⊥ is equal to the cardinality of the set {𝜆𝑖 ∶ 0 < 𝜆𝑖 < 2},
namely

dim(⊥) = card {𝜆𝑖 ∶ 0 < 𝜆𝑖 < 2} = 𝑁,

where the condition 0 < 𝜆𝑖 < 2 corresponds to 1 ≤ 𝑖 ≤ 𝑁 .

Proof. For ∀𝑣 ∈ ⊥, by (2.9) it holds

(∇𝑔,∇𝑣) = 0, ∀𝑔 ∈  (2.32)

For the Poisson problem (2.6) with 𝑔 ∈  ⊂ 𝐻1
0 (Ω), Section 2.2

implies that its solution 𝑧 ∈ 𝑉 ⊂ 𝐻3(Ω). By Section 2.12, 𝑧 ∈
𝐻3(Ω) is equivalent to the fact that for 𝜆𝑖 ∈ (0, 2), the coefficients

𝑑𝑖 = ⟨𝑔, 𝜉𝑖⟩ = (∇𝑔,∇𝜎𝑖) = 0 (2.33)

where we have used (2.25) in the second equality. If 𝜆𝑖 is
not an integer, 𝜆𝑖 ∈ (0, 2) corresponds to the integer 𝑖 ∈ [1, 𝑁].
(2.32) and (2.33) imply that⊥ ⊂ span{𝜎𝑖, 𝑖 = 1, . . . , 𝑁}, which
together with Section 2.10 gives the conclusion. ◽

The cases of 𝜔 = 𝜋

2
and 3𝜋

2
are not covered by Section 2.12. To

address this limitation, we introduce the following additional
result.

Remark 2.14. The asymptotic representation of the solution 𝑧
to problem (2.6) typically involves two types of singular functions
depending on 𝜆𝑖 = 𝑖𝜋∕𝜔:

𝑆𝑖 = (𝑖𝜋)−
1
2 𝑟

𝑖𝜋

𝜔 sin
(
𝑖𝜋𝜃

𝜔

)
when 𝜆𝑖 is not an integer (2.34a)

𝑆𝑖 = 𝑟
𝑖𝜋

𝜔

(
ln 𝑟 sin

(
𝑖𝜋𝜃

𝜔

)
+ 𝜃 cos

(
𝑖𝜋𝜃

𝜔

))
otherwise (2.34b)

Specially, the coefficient of the term in (2.34b) depends locally on
the restriction of the data 𝑔 to any neighborhood of the corner
[28]. If 𝑔 ∈ 𝐻1

0 (Ω), the solution of problem (2.6) has the expan-
sion [28]

𝑧 −
∑

0<𝜆𝑖<2
𝑑𝑖𝑆𝑖 ∈ 𝐻3(Ω) (2.35)

where 𝑑𝑖 is given by (2.30). In other words, when the source term
𝑔 ∈ 𝐻1

0 (Ω), the singular function𝑆𝑖 in (2.34b) with 𝜆𝑖 = 𝑖𝜋∕𝜔 = 2
vanishes in the asymptotic representation of 𝑧.

Corollary 2.15. The dimension of ⊥ satisfies dim(⊥) =
𝑁 . Moreover,

span{𝜎𝑖, 𝑖 = 1, . . . , 𝑁} = ⊥.

Proof. The proof follows from Sections 2.9, and 2.10,
Lemma 2.13, and Section 2.14. ◽

For ∀𝑣 ∈ 𝐻1
0 (Ω), Section 2.15 and (2.9) imply that (∇𝑣,∇𝜎𝑖) =

0, 1 ≤ 𝑖 ≤ 𝑁 and that there exists a unique decomposition,

𝑣 = 𝑣 +
𝑁∑
𝑖=1
𝑐𝑖𝜎𝑖 (2.36)

where 𝑣 ∈  and the coefficients 𝑐𝑖 are uniquely determined
by the linear system,

𝑁∑
𝑖=1
𝑐𝑖(∇𝜎𝑖,∇𝜎𝑗) = (∇𝑣,∇𝜎𝑗), 𝑗 = 1, . . . , 𝑁 (2.37)

By Section 2.11, it holds that for ∀𝜙 ∈ 𝐻1
0 (Ω),

(∇𝜎𝑗,∇𝜙) = ⟨𝜉𝑗 , 𝜙⟩, 𝑗 = 1, . . . , 𝑁 (2.38)

Therefore, the linear system (2.39) is equivalent to the following
linear system

𝑁∑
𝑖=1
𝑐𝑖⟨𝜎𝑖, 𝜉𝑗⟩ = ⟨𝑣, 𝜉𝑗⟩, 𝑗 = 1, . . . , 𝑁. (2.39)

Lemma 2.16. The linear system (2.39) or (2.37) admits a
unique solution 𝑐𝑖, 𝑖 = 1, . . . , 𝑁 .

6 of 22 Numerical Methods for Partial Differential Equations, 2025
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Proof. Since (2.39) and (2.37) are equivalent, we only need to
consider (2.37), which is a finite-dimensional linear system. The
existence of the solution is equivalent to the uniqueness. Let 𝑐𝑖 be
the difference between two possible solutions; it follows(

𝑁∑
𝑖=1
𝑐𝑖∇𝜎𝑖,∇𝜎𝑗

)
=

𝑁∑
𝑖=1
𝑐𝑖(∇𝜎𝑖,∇𝜎𝑗) = 0, 𝑗 = 1, . . . , 𝑁.

A linear combination in terms of ∇𝜎𝑗 gives(
𝑁∑
𝑖=1
𝑐𝑖∇𝜎𝑖,

𝑁∑
𝑗=1
𝑐𝑗∇𝜎𝑗

)
= 0,

which means ‖‖‖∑𝑁

𝑖=1𝑐𝑖∇𝜎𝑖
‖‖‖ = 0, thus we have

𝑁∑
𝑖=1
𝑐𝑖∇𝜎𝑖 = 0.

Section 2.9 indicates 𝑐𝑖 = 0, 𝑖 = 1, . . . , 𝑁 . Thus, the conclusion
holds. ◽

2.4 | The Modified Mixed Formulation

Based on the discussion above, we propose a modified mixed for-
mulation for (1.1),{

−Δ𝑤 = 𝑓 in Ω,
𝑤 = 0 on 𝜕Ω;

{
−Δ𝑣 = 𝑤 in Ω,
𝑣 = 0 on 𝜕Ω;{

−Δ𝑢̃ = 𝑣 −
∑𝑁

𝑖=1𝑐𝑖𝜎𝑖 in Ω,
𝑢̃ = 0 on 𝜕Ω,

(2.40)

where 𝜎𝑖 are given in (2.18) and 𝑐𝑖 are given by (2.37).

The modified mixed weak formulation for (2.40) is to find
𝑤, 𝑣, 𝑢̃ ∈ 𝐻1

0 (Ω) such that

𝐴(𝑤,𝜙) = (𝑓, 𝜙) (2.41a)

𝐴(𝑣, 𝜙) = (𝑤,𝜓) (2.41b)

𝐴(𝑢̃, 𝜏) =

(
𝑣 −

𝑁∑
𝑖=1
𝑐𝑖𝜎𝑖, 𝜏

)
(2.41c)

for any 𝜙, 𝜓, 𝜏 ∈ 𝐻1
0 (Ω).

Next, we show that 𝑢̃ is the weak solution to the variational for-
mulation (2.2).

Theorem 2.17. Given 𝑓 ∈ 𝐻−1(Ω), let 𝑢̃ be the solution of the
modified mixed weak formulation (2.41). Then𝑢̃ is equivalent to the
solution of the weak formulation (2.2), namely, 𝑢 = 𝑢̃ in 𝑉 , and vice
versa.

Proof. Note that 𝑣, 𝜎𝑖 ∈ 𝐻1
0 (Ω). Thus 𝑣 −

∑𝑁

𝑖=1𝑐𝑖𝜎𝑖 ∈ 𝐻
1
0 (Ω). By

(2.39), it holds 𝑑𝑗 = ⟨𝑣 −∑𝑁

𝑖=1𝑐𝑖𝜎𝑖, 𝜉𝑗⟩ = 0, 𝑗 = 1, . . . , 𝑁 . There-
fore, by applying Lemma 2.12 and Section 2.14 to the last Poisson

equation in (2.40), it follows 𝑢̃ ∈ 𝐻3(Ω) ∩𝐻1
0 (Ω). Since Δ𝑢̃|𝜕Ω =

−(𝑣 −
∑𝑁

𝑖=1𝑐𝑖𝜎𝑖)|𝜕Ω = 0, it follows 𝑢̃ ∈ 𝑉 .

On the other hand,

−Δ3𝑢̃ = Δ2𝑣 −
𝑁∑
𝑖=1
𝑐𝑖Δ2𝜎𝑖 = −Δ(−Δ𝑣) = −Δ𝑤 = 𝑓,

where we have used the result (2.22). Thus, we have 𝑢̃ ∈ 𝑉 satis-
fying (2.2). Finally, by the uniqueness of the solution of (2.2) in
𝑉 , the conclusion holds. ◽

Therefore, by Theorem 2.17, the solution 𝑢 of the sixth-order
problem (1.1) satisfies{

−Δ𝑤 = 𝑓 in Ω,
𝑤 = 0 on 𝜕Ω;

{
−Δ𝑣 = 𝑤 in Ω,
𝑣 = 0 on 𝜕Ω;{

−Δ𝑢 = 𝑣 −
∑𝑁

𝑖=1𝑐𝑖𝜎𝑖 in Ω,
𝑢 = 0 on 𝜕Ω,

(2.42)

The corresponding weak formulation is to find 𝑤, 𝑣, 𝑢 ∈ 𝐻1
0 (Ω)

such that for any 𝜙, 𝜓, 𝜏 ∈ 𝐻1
0 (Ω),

𝐴(𝑤,𝜙) = (𝑓, 𝜙) (2.43a)

𝐴(𝑣, 𝜓) = (𝑤,𝜓) (2.43b)

𝐴(𝑢, 𝜏) =

(
𝑣 −

𝑁∑
𝑖=1
𝑐𝑖𝜎𝑖, 𝜏

)
(2.43c)

where 𝑐𝑖, 𝑖 = 1, . . . , 𝑁 , are given in (2.37).

Remark 2.18. For the following cases, the modified mixed
formulation (2.42) is identical to the direct mixed formu-
lation (2.4): (i) 𝑁 = 0, which happens if 𝜔 ≤ 𝜋

2
as shown

in Table 1; (ii) the boundary of domain Ω is sufficiently
smooth; (iii) 𝑐𝑖 = 0, 𝑖 = 1, . . . , 𝑁 in (2.39) or (2.37), which
is possible for some source term 𝑓 such that the solution
𝑣 ∈  in (2.42).

Lemma 2.19. The mapping 𝑣 → 𝑣 in (2.36) defines a norm
non-increasing mapping𝐻1

0 (Ω) →  in the sense

||∇𝑣|| ≤ ||∇𝑣||.
Proof. Multiplying (2.36) by −Δ𝑣, integrating over the
domain Ω, and applying Green’s Theorem give

(∇𝑣,∇𝑣) = (∇𝑣,∇𝑣) +

(
𝑁∑
𝑖=1
𝑐𝑖∇𝜎𝑖,∇𝑣

)
(2.44)

Note that

(∇𝑣,∇𝜎𝑗) =
(
∇

(
𝑣 −

𝑁∑
𝑖=1
𝑐𝑖𝜎𝑖

)
,∇𝜎𝑗

)

= (∇𝑣,∇𝜎𝑗) −
𝑁∑
𝑖=1
𝑐𝑖
(
∇𝜎𝑖,∇𝜎𝑗

)
= 0, 𝑗 = 1, . . . , 𝑁,
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where we have used (2.37) in the last equality. For the last term
in (2.44), it follows (

𝑁∑
𝑖=1
𝑐𝑖∇𝜎𝑖,∇𝑣

)
= 0.

Then, applying Hölder’s inequality to (2.44), it follows

||∇𝑣||2 = (∇𝑣,∇𝑣) ≤ ||∇𝑣||||∇𝑣||,
which gives the conclusion. ◽

In addition, we have the following regularity result.

Theorem 2.20. Given 𝑓 ∈ 𝐻−1(Ω), for 𝑤, 𝑢, 𝑣 in(2.42), it
follows ||𝑤||𝐻1(Ω) ≤𝐶||𝑓 ||𝐻−1(Ω) (2.45a)

||𝑣||𝐻1(Ω) ≤𝐶||𝑓 ||𝐻−1(Ω) (2.45b)

||𝑢||𝐻3(Ω) ≤𝐶||𝑓 ||𝐻−1(Ω) (2.45c)

Proof. The estimate (2.45a) is a direct consequence of the fact
that the Laplace operator is an isomorphism between𝐻1

0 (Ω) and
𝐻−1(Ω). In a similar fashion,

||𝑣||𝐻1(Ω) ≤ ||𝑤||𝐻−1(Ω) ≤ 𝐶||𝑤||𝐻1(Ω) ≤ 𝐶||𝑓 ||𝐻−1(Ω),

which gives the estimate (2.45b). By Theorem 2.17, it follows 𝑢 ∈
𝑉 . Moreover, (2.31) gives

||𝑢||𝐻3 ≤ 𝐶
‖‖‖‖‖‖𝑣 −

𝑁∑
𝑖=1
𝑐𝑖𝜎𝑖

‖‖‖‖‖‖𝐻1(Ω)

= 𝐶||𝑣||𝐻1(Ω) ≤ 𝐶||𝑣||𝐻1(Ω) ≤ 𝐶||𝑓 ||𝐻−1(Ω), (2.46)

where we have used Lemma 2.19 and Poincaré inequality. ◽

3 | The Finite Element Method

In this section, we introduce a linear𝐶0 finite element method for
solving the sixth-order problem (1.1). Subsequently, we conduct
a finite element error analysis.

3.1 | The Finite Element Algorithm

Let 𝑛 denote a triangulation of Ω consisting of shape-regular
triangles, and let𝑆𝑛 ⊂ 𝐻1

0 (Ω) be the𝐶0 Lagrange linear finite ele-
ment space associated with 𝑛. Then we proceed to propose the
finite element algorithm.

Algorithm 3.1. We define the finite element solution of the
sixth-order problem (1.1) by employing the decoupling presented in
(2.43) as follows:

• Step 1. Find the finite element solution𝑤𝑛 ∈ 𝑆𝑛 of the Poisson
equation

𝐴(𝑤𝑛, 𝜙) = (𝑓, 𝜙), ∀𝜙 ∈ 𝑆𝑛 (3.1)

• Step 2. Find the finite element solution 𝑣𝑛 ∈ 𝑆𝑛 of the Poisson
equation

𝐴(𝑣𝑛, 𝜓) = (𝑤𝑛, 𝜓), ∀𝜓 ∈ 𝑆𝑛 (3.2)

• Step 3. With 𝜒𝑖, 𝑖 = 1, . . . , 𝑁 defined in (2.16), we compute the
finite element solution 𝜁𝑖,𝑛 ∈ 𝑆𝑛 of the Poisson equation

𝐴(𝜁𝑖,𝑛, 𝜙) = (Δ𝜒𝑖, 𝜙), ∀𝜙 ∈ 𝑆𝑛 (3.3)

and set 𝜉𝑖,𝑛 = 𝜁𝑖,𝑛 + 𝜒𝑖.

• Step 4. Find the finite element solution 𝜎𝑖,𝑛 ∈ 𝑆𝑛, 𝑖 = 1, . . . , 𝑁
of the Poisson equation

𝐴(𝜎𝑖,𝑛, 𝜙) = (𝜉𝑖,𝑛, 𝜙), ∀𝜙 ∈ 𝑆𝑛 (3.4)

• Step 5. Find the coefficient 𝑐𝑖,𝑛 ∈ ℝ by solving the linear system

𝑁∑
𝑖=1
𝑐𝑖,𝑛⟨𝜎𝑖,𝑛, 𝜉𝑗,𝑛⟩ = ⟨𝑣𝑛, 𝜉𝑗,𝑛⟩, 𝑗 = 1, . . . , 𝑁 (3.5)

• Step 6. Find the finite element solution 𝑢𝑛 ∈ 𝑆𝑛 of the Poisson
equation

𝐴(𝑢𝑛, 𝜏) =

(
𝑣𝑛 −

𝑁∑
𝑖=1
𝑐𝑖,𝑛𝜎𝑖,𝑛, 𝜏

)
, ∀𝜏 ∈ 𝑆𝑛 (3.6)

Remark 3.2. According to (3.3), 𝜁𝑖,𝑛 ∈ 𝑆𝑛, while 𝜉𝑖,𝑛 ∈ 𝐻−1(Ω)
but 𝜉𝑖,𝑛 ∉ 𝑆𝑛. In addition, the finite element approximations
in Algorithm 3.1 are well defined based on the Lax–Milgram
Theorem.

For the functions in (3.1), the following results hold.

Lemma 3.3.

a. The 𝐻−1(Ω) functions 𝜉𝑖,𝑛, 𝑖 = 1, 2, . . . , 𝑁 , are linearly inde-
pendent.

b. The functions 𝜎𝑖,𝑛,∇𝜎𝑖,𝑛, 𝑖 = 1, 2, . . . , 𝑁 , are also linearly
independent, respectively.

Proof.

a. The proof is similar to the proof of Theorem 2.9a.

b. We assume that
∑𝑁

𝑖=1𝐶
′
𝑖
𝜎𝑖,𝑛 = 0 for some constants 𝐶 ′

𝑖
. The

combination of (3.4) gives(
𝑁∑
𝑖=1
𝐶 ′
𝑖
𝜉𝑖,𝑛, 𝜙

)
= 𝐴

(
𝑁∑
𝑖=1
𝐶 ′
𝑖
𝜎𝑖,𝑛, 𝜙

)
= 0.

By (a), we have 𝐶 ′
𝑖
= 0, 𝑖 = 1, . . . , 𝑁 , which implies 𝜎𝑖,𝑛, 𝑖 =

1, 2, . . . , 𝑁 , are linearly independent. The linear indepen-
dence of ∇𝜎𝑖,𝑛 can be proved similarly. ◽

3.2 | Optimal Error Estimates
on Quasi-Uniform Meshes

Suppose that the mesh 𝑛 consists of quasi-uniform triangles with
size ℎ. Recall the interpolation error estimates [10] on 𝑛 for any
𝑧 ∈ 𝐻1+𝑠(Ω), 𝑠 > 0,
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||𝑧 − 𝑧𝐼 ||𝐻𝑚(Ω) ≤ 𝐶ℎmin{𝑠+1,2}−𝑚||𝑧||𝐻min{𝑠+1,2}(Ω) (3.7)

where 𝑚 = 0, 1 and 𝑧𝐼 ∈ 𝑆𝑛 represents the nodal interpolation
of 𝑧. Let 𝑧𝑛 ∈ 𝑆𝑛 be the finite element solution of the Poisson
Equation (2.6) in the polygonal domain, if 𝑧 ∈ 𝐻1+𝑠(Ω), 𝑠 > 0, the
standard error estimate [10, 29] yields

||𝑧 − 𝑧𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{𝑠,1}||𝑧||𝐻1+min{𝑠,1}(Ω),||𝑧 − 𝑧𝑛|| ≤ 𝐶ℎ2 min{𝑠,1}||𝑧||𝐻1+min{𝑠,1}(Ω). (3.8)

Given 𝑔 ∈ 𝐿2(Ω) in (2.6), it is well known that the solution 𝑧 ∈
𝐻1+𝛼(Ω) with 𝛼 < 𝜋

𝜔
(see e.g., [21, 28, 29]). Note that 𝑓,Δ𝜒𝑖 ∈

𝐿2(Ω) in Poisson Equations (2.17) and (2.42), so it follows𝑤, 𝜁𝑖 ∈
𝐻1+𝛼(Ω). Note that 𝜉𝑖 ∈ 𝐻−1(Ω), but Step 3 in Algorithm 3.1 indi-
cates 𝜉𝑖 − 𝜉𝑖,𝑛 = 𝜁𝑖 − 𝜁𝑖,𝑛. Therefore, we have the following error
estimates:

Lemma 3.4. Given 𝑤𝑛 and 𝜉𝑖,𝑛 in Algorithm 3.1, it follows

||𝑤 −𝑤𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{𝛼,1}||𝑤||𝐻1+min{𝛼,1}(Ω)
(3.9a)||𝑤 −𝑤𝑛|| ≤ 𝐶ℎ2 min{𝛼,1}||𝑤||𝐻1+min{𝛼,1}(Ω) (3.9b)

||𝜉𝑖 − 𝜉𝑖,𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{𝛼,1}||𝜁𝑖||𝐻1+min{𝛼,1}(Ω) (3.9c)

||𝜉𝑖 − 𝜉𝑖,𝑛||𝐻−1(Ω) ≤ 𝐶||𝜉𝑖 − 𝜉𝑖,𝑛|| ≤ 𝐶ℎ2 min{𝛼,1}||𝜁𝑖||𝐻1+min{𝛼,1}(Ω)
(3.9d)

Note that the basis {𝜎𝑖}𝑁𝑖=1 given in Section 2.4 is not orthogonal
if𝜔 > 𝜋. For analysis convenience, we can apply Schmidt orthog-
onalization to obtain an orthogonal basis {𝜎̃𝑖}𝑁𝑖=1,

𝜎̃1 = 𝜎1,

𝜎̃2 = 𝜎2 −
(∇𝜎2,∇𝜎̃1)||∇𝜎̃1||2 𝜎̃1,

𝜎̃3 = 𝜎3 −
(∇𝜎3,∇𝜎̃1)||∇𝜎̃1||2 𝜎̃1 −

(∇𝜎3,∇𝜎̃2)||∇𝜎̃2||2 𝜎̃2. (3.10)

Namely, (∇𝜎̃𝑖,∇𝜎̃𝑗) = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 is the Kronecker delta func-
tion. Furthermore, we denote {𝜉𝑖}𝑁𝑖=1 by

𝜉1 = 𝜉1,

𝜉2 = 𝜉2 −
(∇𝜎2,∇𝜎̃1)||∇𝜎̃1||2 𝜉1,

𝜉3 = 𝜉3 −
(∇𝜎3,∇𝜎̃1)||∇𝜎̃1||2 𝜉1 −

(∇𝜎3,∇𝜎̃2)||∇𝜎̃2||2 𝜉2. (3.11)

It can be verified that

− Δ𝜎̃𝑖 = 𝜉𝑖 in Ω, 𝜎̃𝑖 = 0 on 𝜕Ω (3.12)

and its weak formulation is to find 𝜎̃𝑖 ∈ 𝐻1
0 (Ω) such that ∀𝜙 ∈

𝐻1
0 (Ω),

𝐴(𝜎̃𝑖, 𝜙) = ⟨𝜉𝑖, 𝜙⟩ (3.13)

With the new basis {𝜎̃𝑖}𝑁𝑖=1, the third Poisson problem in (2.42)
can be equivalently written as{

−Δ𝑢 = 𝑣 −
∑𝑁

𝑖=1𝑐𝑖𝜎̃𝑖 in Ω,
𝑢 = 0 on 𝜕Ω,

(3.14)

where the coefficients

𝑐𝑖 =
⟨𝑣, 𝜉𝑖⟩⟨𝜎̃𝑖, 𝜉𝑖⟩ , 𝑖 = 1, . . . , 𝑁 (3.15)

or equivalently,

𝑐𝑖 =
(∇𝑣,∇𝜎̃𝑖)||∇𝜎̃𝑖||2 , 𝑖 = 1, . . . , 𝑁 (3.16)

Correspondingly, the weak formulation (2.43c) becomes

𝐴(𝑢, 𝜏) =

(
𝑣 −

𝑁∑
𝑖=1
𝑐𝑖𝜎̃𝑖, 𝜏

)
(3.17)

Similarly, we apply the Schmidt orthogonalization to obtain an
orthogonal basis {𝜎̃𝑖,𝑛}𝑁𝑖=1,

𝜎̃1,𝑛 = 𝜎1,𝑛,

𝜎̃2,𝑛 = 𝜎2,𝑛 −
(∇𝜎2,𝑛,∇𝜎̃1,𝑛)||∇𝜎̃1,𝑛||2 𝜎̃1,𝑛,

𝜎̃3,𝑛 = 𝜎3,𝑛 −
(∇𝜎3,𝑛,∇𝜎̃1,𝑛)||∇𝜎̃1,𝑛||2 𝜎̃1,𝑛 −

(∇𝜎3,𝑛,∇𝜎̃2,𝑛)||∇𝜎̃2,𝑛||2 𝜎̃2,𝑛. (3.18)

Namely, (∇𝜎̃𝑖,𝑛,∇𝜎̃𝑗,𝑛) = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 is the Kronecker delta
function. Similarly, we take {𝜉𝑖}𝑁𝑖=1,

𝜉1,𝑛 = 𝜉1,𝑛,

𝜉2,𝑛 = 𝜉2,𝑛 −
(∇𝜎2,𝑛,∇𝜎̃1,𝑛)||∇𝜎̃1,𝑛||2 𝜉1,𝑛,

𝜉3,𝑛 = 𝜉3,𝑛 −
(∇𝜎3,𝑛,∇𝜎̃1,𝑛)||∇𝜎̃1,𝑛||2 𝜉1,𝑛 −

(∇𝜎3,𝑛,∇𝜎̃2,𝑛)||∇𝜎̃2,𝑛||2 𝜉2,𝑛. (3.19)

For the orthogonal basis {𝜎̃𝑖,𝑛}𝑁𝑖=1,

𝐴(𝜎̃𝑖,𝑛, 𝜙) = ⟨𝜉𝑖,𝑛, 𝜙⟩ (3.20)

and the last two steps of Algorithm 3.1 can be modified as

• Step 5. Find the coefficient 𝑐𝑖,𝑛 ∈ ℝ,

𝑐𝑖,𝑛 =
⟨𝑣𝑛, 𝜉𝑖,𝑛⟩⟨𝜎̃𝑖,𝑛, 𝜉𝑖,𝑛⟩ , 𝑖 = 1, . . . , 𝑁 (3.21)

• Step 6. Find the finite element solution 𝑢𝑛 ∈ 𝑆𝑛 of the Poisson
equation

𝐴(𝑢𝑛, 𝜏) =

(
𝑣𝑛 −

𝑁∑
𝑖=1
𝑐𝑖,𝑛𝜎̃𝑖,𝑛, 𝜏

)
, ∀𝜏 ∈ 𝑆𝑛 (3.22)

To show the error estimates, we prepare the following results.

Lemma 3.5. (i) Assume that 0 ≤ 𝑠 ≤ 1. Then for 𝜙 ∈ 𝐻𝑠
0 (Ω) ⊂

𝐻1
0 (Ω) it follows that 𝑟−𝑠𝜙 ∈ 𝐿2(Ω) and

||𝑟−𝑠𝜙|| ≤ 𝐶||𝜙||𝐻𝑠(Ω) ≤ 𝐶||𝜙||𝐻1(Ω) (3.23)

(ii) If 𝛾 ∈ [0, 1), 𝑠′ ≤ 1 + 𝛾 , and 𝜙 ∈ 𝐻𝑠′−𝛾
0 (Ω) ⊂ 𝐻1

0 (Ω), then we
have 𝑟−𝑠′𝜙 ∈ 𝐻−𝛾 (Ω) and

Numerical Methods for Partial Differential Equations, 2025 9 of 22
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||𝑟−𝑠′𝜙||𝐻−𝛾 (Ω) ≤ 𝐶||𝑟−𝑠′+𝛾𝜙|| (3.24)

Proof. (i) The estimate (3.23) follows from ([21], Theorem
1.2.15).

(ii) Since 𝑠′ − 𝛾 ≤ 1, then we have 𝑟−𝑠′+𝛾𝜙 ∈ 𝐿2(Ω) by (i) and it
holds ||𝑟−𝑠′+𝛾𝜙|| ≤ 𝐶||𝜙||𝐻𝑠′−𝛾 (Ω). For (3.24), we have

||𝑟−𝑠′𝜙||𝐻−𝛾 (Ω) ∶ = sup
𝜓∈𝐻𝛾

0 (Ω)

⟨𝑟−𝑠′𝜙, 𝜓⟩||𝜓||𝐻𝛾 (Ω)
= sup
𝜓∈𝐻𝛾

0 (Ω)

⟨𝑟−𝑠′+𝛾𝜙, 𝑟−𝛾𝜓⟩||𝜓||𝐻𝛾 (Ω)

≤ sup
𝜓∈𝐻𝛾

0 (Ω)

||𝑟−𝑠′+𝛾𝜙||||𝑟−𝛾𝜓||||𝜓||𝐻𝛾 (Ω)
≤ 𝐶||𝑟−𝑠′+𝛾𝜙||,

where (3.23) is used for 𝜓 in the last inequality. ◽

Next, we introduce some regularity results for a general Poisson
problem (2.6).

Lemma 3.6. For 𝑔 ∈ 𝐻min{𝛼−1,𝑠}(Ω) for any 𝑠 ∈ (−1, 0]
and𝛼 ∈ ( 1

2
,
𝜋

𝜔
), then (2.6) admits a unique solution 𝑧 ∈

𝐻min{𝛼+1,𝑠+2}(Ω) and it holds

||𝑧||𝐻min{𝛼+1,𝑠+2}(Ω) ≤ 𝐶||𝑔||𝐻min{𝛼−1,𝑠}(Ω) (3.25)

Proof. The proof follows from ([25], Theorem 3.1). ◽

Lemma 3.7. For 𝛽𝑖 ∈ (−1, 1 − 𝑖𝜋

𝜔
), 𝑖 = 1, . . . , 𝑁 , and 𝛼 ∈

( 1
2
⌊ 2𝜋
𝜔
⌋, 𝜋
𝜔
) with𝜔 ∈ ( 𝜋

2
, 2𝜋), if𝜙 ∈ 𝐻1

0 (Ω) and𝑔 = 𝑟2 min{𝛼−1,𝛽𝑖}𝜙,
then (2.6) admits a unique solution 𝑧 ∈ 𝐻min{2+𝛽𝑖,1+𝛼}(Ω) and
holds the estimates

||𝑧||𝐻min{2+𝛽𝑖 ,1+𝛼}(Ω) ≤ 𝐶||𝑟min{𝛼−1,𝛽𝑖}𝜙|| (3.26)

Here, ⌊⋅⌋ represents the floor function.

Proof. (1) If 𝜔 ∈
(
𝜋

2
, 𝜋

)
, namely 𝜋

𝜔
∈ (1, 2), then −1 < 𝛽𝑁 =

𝛽1 < 1 − 𝜋

𝜔
< 0 and 𝛼 − 1 > 1

2
⌊ 2𝜋
𝜔
⌋ − 1 ≥ 0. Consequently, it

holds min{𝛼 − 1, 𝛽𝑖} = 𝛽𝑖 ∈ (−1, 0).

(2) If 𝜔 ∈ (𝜋, 2𝜋), it follows 𝛼 ∈
(

1
2
,
𝜋

𝜔

)
⊂

(
1
2
, 1
)

, implying 𝛼 −

1 ∈
(
− 1

2
, 0
)

. This, together with the assumption on 𝛽𝑖, implies
−1 < min{𝛼 − 1, 𝛽𝑖} ≤ 𝛼 − 1 < 0.

Combining (1) and (2), we conclude that for 𝜔 ∈
(
𝜋

2
, 2𝜋

)
⧵ 𝜋,

min{𝛼 − 1, 𝛽𝑖} ∈ (−1, 0) (3.27)

For ∀𝜙 ∈ 𝐻1
0 (Ω), taking 𝑠 = −min{𝛼 − 1, 𝛽𝑖} ∈ (0, 1) in

Lemma 3.5i yields 𝑟min{𝛼−1,𝛽𝑖}𝜙 = 𝑟−𝑠𝜙 ∈ 𝐿2(Ω) and

||𝑟min{𝛼−1,𝛽𝑖}𝜙|| = ||𝑟−𝑠𝜙|| ≤ 𝐶||𝜙||𝐻𝑠(Ω) ≤ 𝐶||𝜙||𝐻1(Ω) (3.28)

By taking 𝑠′ = −2 min{𝛼 − 1, 𝛽𝑖} and 𝛾 = −min{𝛼 −
1, 𝛽𝑖} in Lemma 3.5ii, it follows 𝑔 = 𝑟−𝑠′𝜙 ∈ 𝐻−𝛾 (Ω) =
𝐻min{𝛼−1,𝛽𝑖}(Ω) and

||𝑔||𝐻min{𝛼−1,𝛽𝑖}(Ω) = ||𝑟−𝑠′𝜙||𝐻−𝛾 (Ω) ≤ 𝐶||𝑟−𝑠′+𝛾𝜙|| = 𝐶||𝑟min{𝛼−1,𝛽𝑖}𝜙||
(3.29)

(3.28) and (3.29) imply that for ∀𝜙 ∈ 𝐻1
0 (Ω),

TABLE 2 | The regularity of 𝜎𝑖 in different cases. (− means no such
term.)

𝝎 (0, 𝝅
2
] ( 𝝅

2
, 𝝅) (𝝅, 3𝝅

2
] ( 3𝝅

2
, 2𝝅)

𝜎1 — 𝐻2+𝛽1 (Ω) 𝐻1+𝛼(Ω) 𝐻1+𝛼(Ω)
𝜎2 — — 𝐻2+𝛽2 (Ω) 𝐻1+𝛼(Ω)
𝜎3 — — — 𝐻2+𝛽3 (Ω)

||𝑔||𝐻min{𝛼−1,𝛽𝑖}(Ω) ≤ 𝐶||𝜙||𝐻1(Ω) (3.30)

By Lemma 3.6, the Poisson problem (2.6) admits a unique solu-
tion 𝑧 ∈ 𝐻min{2+𝛽𝑖,1+𝛼}(Ω) and

||𝑧||𝐻min{2+𝛽𝑖 ,1+𝛼}(Ω) ≤ 𝐶||𝑔||𝐻min{𝛼−1,𝛽𝑖}(Ω) (3.31)

which, combined with (3.29), yields the estimate (3.26). ◽

By (2.15) in Definition 2.4, we have 𝜉𝑖 ∈ 𝐻𝛽𝑖 ⊂ 𝐻−1(Ω), where
−1 < 𝛽𝑖 < 1 − 𝑖𝜋

𝜔
, 𝑖 = 1, . . . , 𝑁 satisfying 𝛽1 > . . . > 𝛽𝑁 . Apply-

ing Lemma 3.6 to the Poisson problem (2.18), it follows 𝜎𝑖 ∈
𝐻min{2+𝛽𝑖,1+𝛼}, which is further specified in Table 2.

Then for the finite element solution 𝜎𝑖,𝑛 in (3.4), we have the fol-
lowing result.

Lemma 3.8. For 𝜎𝑖,𝑛 in Algorithm 3.1, we have for 1 ≤ 𝑖 ≤ 𝑁 ,

||𝜎𝑖 − 𝜎𝑖,𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼} (3.32a)

||𝜎𝑖 − 𝜎𝑖,𝑛|| ≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼} (3.32b)

||𝑟min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛)|| ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼}+min{1+𝛽𝑗 ,𝛼} (3.32c)

where 1 ≤ 𝑗 ≤ 𝑁 .

Proof. The difference of weak formulation of (2.18) and (3.4)
gives

𝐴(𝜎𝑖 − 𝜎𝑖,𝑛, 𝜙) = (𝜉𝑖 − 𝜉𝑖,𝑛, 𝜙) (3.33)

Let 𝜎𝑖,𝐼 ∈ 𝑆𝑛 be the nodal interpolation of 𝜎𝑖. Set 𝜖𝑖 = 𝜎𝑖,𝐼 −
𝜎𝑖, 𝑒𝑖 = 𝜎𝑖,𝐼 − 𝜎𝑖,𝑛 and take 𝜙 = 𝑒𝑖 in the equation above, we have

𝐴(𝑒𝑖, 𝑒𝑖) = 𝐴(𝜖𝑖, 𝑒𝑖) + (𝜉𝑖 − 𝜉𝑖,𝑛, 𝑒𝑖),

which implies

||𝑒𝑖||𝐻1(Ω) ≤ ||𝜖𝑖||𝐻1(Ω) + ||𝜉𝑖 − 𝜉𝑖,𝑛||𝐻−1(Ω).

Using the triangle inequality, it follows

||𝜎𝑖 − 𝜎𝑖,𝑛||𝐻1(Ω) ≤ ||𝑒𝑖||𝐻1(Ω) + ||𝜖𝑖||𝐻1(Ω)

≤ 𝐶(||𝜖𝑖||𝐻1(Ω) + ||𝜉𝑖 − 𝜉𝑖,𝑛||𝐻−1(Ω)
)

≤ 𝐶ℎmin{1+𝛽𝑖,𝛼},

where we have used the projection error (3.7) and (3.9d).

To obtain the error in 𝐿2 norm, we consider the Poisson problem
(2.6). By the Aubin–Nitsche Lemma in ([10], Theorem 3.2.4),
we have

10 of 22 Numerical Methods for Partial Differential Equations, 2025
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||𝜎𝑖 − 𝜎𝑖,𝑛|| ≤ 𝐶||𝜎𝑖 − 𝜎𝑖,𝑛||𝐻1(Ω) sup
𝑔∈𝐿2(Ω)

⎛⎜⎜⎝
inf
𝜓∈𝑆𝑛

||𝑧 − 𝜓||𝐻1(Ω)||𝑔|| ⎞⎟⎟⎠. (3.34)

By the regularity (3.25), we have

inf
𝜓∈𝑆𝑛

||𝑧 − 𝜓||𝐻1(Ω) ≤ ||𝑧 − 𝑧𝐼 ||𝐻1(Ω)

≤ 𝐶ℎmin{𝛼,1}||𝑧||𝐻1+min{𝛼,1}(Ω)

≤ 𝐶ℎmin{𝛼,1}||𝑔||. (3.35)

Plugging (3.35) and (3.32a) into (3.34) gives the estimate (3.32b).

We take 𝑔 = 𝑟2 min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛), 𝑖 = 1, . . . , 𝑁 in (2.6),
since 𝜎𝑗 − 𝜎𝑗,𝑛 ∈ 𝐻1

0 (Ω), so Lemma 3.7indicates that 𝑧 ∈
𝐻min{2+𝛽𝑖,1+𝛼}(Ω). By (3.7), we have the interpolation error

||𝑧 − 𝑧𝐼 ||𝐻1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼}||𝑧||𝐻min{2+𝛽𝑖 ,1+𝛼}(Ω) (3.36)

The weak formulation of (2.6) with given 𝑔 is find to 𝑧 ∈ 𝐻1
0 (Ω)

such that

⟨𝑟2 min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛), 𝜓⟩ = 𝐴(𝑧, 𝜓), ∀𝜓 ∈ 𝐻1
0 (Ω).

Set 𝜓 = 𝜎𝑗 − 𝜎𝑗,𝑛 and subtract (3.33) with 𝜙 = 𝑧𝐼 from the
equation above, it follows

||𝑟min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛)||2
= 𝐴(𝜎𝑗 − 𝜎𝑗,𝑛, 𝑧 − 𝑧𝐼 ) + (𝜉𝑗 − 𝜉𝑗,𝑛, 𝑧𝐼 )

= 𝐴(𝜎𝑗 − 𝜎𝑗,𝑛, 𝑧 − 𝑧𝐼 ) + (𝜉𝑗 − 𝜉𝑗,𝑛, 𝑧𝐼 − 𝑧) + (𝜉𝑗 − 𝜉𝑗,𝑛, 𝑧)

≤ ||𝜎𝑗 − 𝜎𝑗,𝑛||𝐻1(Ω)||𝑧 − 𝑧𝐼 ||𝐻1(Ω)

+ ||𝜉𝑗 − 𝜉𝑗,𝑛||𝐻−1(Ω)
(||𝑧𝐼 − 𝑧||𝐻1(Ω) + ||𝑧||𝐻1(Ω)

)
.

By the estimates in (3.9d), (3.32a), (3.36), and the regularity result
in Lemma 3.7, it holds

||𝑟min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛)||2
≤ 𝐶ℎmin{1+𝛽𝑖,𝛼}+min{1+𝛽𝑗 ,𝛼}||𝑧||𝐻min{2+𝛽𝑖 ,1+𝛼}(Ω)

≤ 𝐶ℎmin{1+𝛽𝑖,𝛼}+min{1+𝛽𝑗 ,𝛼}||𝑟min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛)||,
which gives the error estimate (3.32c). ◽

Lemma 3.4 and Lemma 3.8 imply that ||𝜉𝑖,𝑛||𝐻−1(Ω), ||𝜎𝑖,𝑛|| and||∇𝜎𝑖,𝑛||, 𝑖 = 1, . . . , 𝑁 are uniformly bounded when ℎ ≤ ℎ0 for
some threshold ℎ0.

Lemma 3.9. For the basis 𝜎̃𝑖 and the corresponding finite ele-
ment solution 𝜎̃𝑖,𝑛, we have

||𝜎̃𝑖 − 𝜎̃𝑖,𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼}, 𝑖 = 1, . . . , 𝑁 (3.37)

Proof. By Lemma 3.8, it is obvious that

||𝜎̃1 − 𝜎̃1,𝑛||𝐻1(Ω) = ||𝜎1 − 𝜎1,𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{1+𝛽1 ,𝛼}.

We assume that the conclusion holds for 𝑖 ≤ 𝑗 − 1,

||𝜎̃𝑖 − 𝜎̃𝑖,𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼} (3.38)

A quick calculation gives that

∇𝜎̃𝑗 − ∇𝜎̃𝑗,𝑛 = ∇𝜎𝑗 − ∇𝜎𝑗,𝑛

−
𝑗−1∑
𝑖=1

( (∇𝜎𝑗 ,∇𝜎̃𝑖)||∇𝜎̃𝑖||2 ∇𝜎̃𝑖 −
(∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖,𝑛||2 ∇𝜎̃𝑖,𝑛

)
=
(
∇𝜎𝑗 − ∇𝜎𝑗,𝑛

)

−
𝑗−1∑
𝑖=1

(
(∇𝜎𝑗 ,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2∇𝜎̃𝑖

−(∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 .

We then have

||∇𝜎̃𝑗 − ∇𝜎̃𝑗,𝑛|| ≤ ||∇𝜎𝑗 − ∇𝜎𝑗,𝑛||
+
𝑗−1∑
𝑖=1

‖‖‖(∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2∇𝜎̃𝑖 − (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2∇𝜎̃𝑖,𝑛‖‖‖||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 .

We know that ∇𝜎̃𝑖 obtained through (3.10) depend only on Ω.
Therefore, we have

0 < 𝛾1 ≤ ||∇𝜎̃𝑖|| ≤ 𝛾2, 𝑖 = 1, . . . , 𝑁 (3.39)

where 𝛾1 = min1≤𝑖≤𝑁{||∇𝜎̃𝑖||}, and 𝛾2 = max1≤𝑖≤𝑁{||∇𝜎̃𝑖||}. Let

ℎ ≤ ℎ0 ≤ min
{

1,
(
𝛾1
2𝐶

) 1
min{1+𝛽𝑖 ,𝛼}

}
, 𝑖 = 1, . . . , 𝑗 − 1 in (3.37), it fol-

lows that

1
2
𝛾1 ≤ ||∇𝜎̃𝑖,𝑛|| ≤ 𝛾2 −

1
2
𝛾1, 𝑖 = 1, . . . , 𝑗 − 1 (3.40)

(3.39) and (3.40) implies

1||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 ≤ 𝐶 (3.41)

where 𝐶 is a constant. By Lemma 3.8, it holds

||∇𝜎𝑗 − ∇𝜎𝑗,𝑛|| ≤ ||𝜎𝑗 − 𝜎𝑗,𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑗 ,𝛼} (3.42)

To this end, we will get an error estimate for‖‖‖(∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2∇𝜎̃𝑖 − (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2∇𝜎̃𝑖,𝑛‖‖‖. Note that

(∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2∇𝜎̃𝑖 − (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2∇𝜎̃𝑖,𝑛
= (∇𝜎𝑗 − ∇𝜎𝑗,𝑛,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2∇𝜎̃𝑖
+ (∇𝜎𝑗,𝑛,∇𝜎̃𝑖 − ∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖,𝑛||2∇𝜎̃𝑖
+ (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)(||∇𝜎̃𝑖,𝑛||2 − ||∇𝜎̃𝑖||2)∇𝜎̃𝑖
+ (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2(∇𝜎̃𝑖 − ∇𝜎̃𝑖,𝑛)

∶= 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4.

By Lemma 3.8 again, we have

||𝑇1|| ≤ ||∇𝜎̃𝑖,𝑛||2||∇𝜎̃𝑖||2||∇𝜎𝑗 − ∇𝜎𝑗,𝑛|| ≤ 𝐶ℎmin{1+𝛽𝑗 ,𝛼}.

By assumption (3.38), we have

||𝑇2|| ≤ ||∇𝜎𝑗,𝑛||||∇𝜎̃𝑖,𝑛||2||∇𝜎̃𝑖||||∇𝜎̃𝑖 − ∇𝜎̃𝑖,𝑛|| ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼}.

||𝑇3|| ≤ ||∇𝜎𝑗,𝑛||||∇𝜎̃𝑖,𝑛||||∇𝜎̃𝑖|| × (||∇𝜎̃𝑖|| + ||∇𝜎̃𝑖,𝑛||)
× ||||∇𝜎̃𝑖|| − ||∇𝜎̃𝑖,𝑛|||| ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼},

where we used the inequality ||||∇𝜎̃𝑖|| − ||∇𝜎̃𝑖,𝑛|||| ≤ ||∇𝜎̃𝑖 −
∇𝜎̃𝑖,𝑛||.

Numerical Methods for Partial Differential Equations, 2025 11 of 22
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Last, we have

||𝑇4|| ≤ ||∇𝜎𝑗,𝑛||||∇𝜎̃𝑖,𝑛||||∇𝜎̃𝑖||2||∇𝜎̃𝑖 − ∇𝜎̃𝑖,𝑛|| ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼}.

Thus, we have

‖‖‖(∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2∇𝜎̃𝑖 − (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2∇𝜎̃𝑖,𝑛‖‖‖
≤

4∑
𝑙=1

||𝑇𝑙|| ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼}. (3.43)

Note that 𝛽𝑖 > 𝛽𝑗 , thus the combination of (3.42) and (3.43) gives

||𝜎̃𝑗 − 𝜎̃𝑗,𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑗 ,𝛼} (3.44)

The method of induction leads to the conclusion. ◽

Lemma 3.10. For 𝑖 = 1, . . . , 𝑁 , it holds 𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖 ∈
𝐿2(Ω) and ||𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖|| ≤ 𝐶 (3.45)

where 𝐶 depends on 𝛽𝑖 and Ω.

Proof. By (2.15), for 𝑘 ≤ 𝑖,

𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑘 = 𝜂(𝑟; 𝜏, 𝑅)𝑟
−min{𝛼−1,𝛽𝑖}−

𝑘𝜋

𝜔 sin
(
𝑘𝜋

𝜔
𝜃

)
+ 𝑟−min{𝛼−1,𝛽𝑖}𝜁𝑘 ∶= 𝑇11 + 𝑇12.

Since 𝛽𝑖 ≤ 𝛽𝑘 < 1 − 𝑘𝜋

𝜔
, it follows

−min{𝛼 − 1, 𝛽𝑖} −
𝑘𝜋

𝜔
> 𝛽𝑖 − min{𝛼 − 1, 𝛽𝑖} − 1 ≥ −1.

Therefore, 𝑇11 ∈ 𝐿2(Ω), namely,

||𝑇11|| ≤ 𝐶 (3.46)

For 𝑇12, it follows

||𝑇12|| ≤ ||𝑟−min{𝛼−1,𝛽𝑖}||𝐿∞(Ω)||𝜁𝑘|| ≤ 𝐶||𝜁𝑘||𝐻1(Ω) (3.47)

(3.46) and (3.47) imply that

||𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑘|| ≤ ||𝑇11|| + ||𝑇12|| ≤ 𝐶 (3.48)

By the construction of 𝜉𝑖 in (3.11), we can obtain the estimate
(3.45). ◽

Lemma 3.11. For 𝑖 = 1, . . . , 𝑁 , the orthogonal functions 𝜎̃𝑖 in
(3.10), 𝜉𝑖 in (3.11), and their finite element approximations 𝜎̃𝑖,𝑛 in
(3.18), 𝜉𝑖,𝑛 in (3.19) satisfy

||𝜉𝑖 − 𝜉𝑖,𝑛||𝐻−1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼} (3.49a)

||𝜎̃𝑖 − 𝜎̃𝑖,𝑛|| ≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼} (3.49b)

||𝑟min{𝛼−1,𝛽𝑘}(𝜎̃𝑖 − 𝜎̃𝑖,𝑛)|| ≤ 𝐶ℎmin{1+𝛽𝑘,𝛼}+min{1+𝛽𝑖,𝛼} (3.49c)

where 1 ≤ 𝑘 ≤ 𝑁 .

Proof. It is easy to verify that the estimates in (3.49) hold when
𝑖 = 1, and we assume that they also hold for 𝑖 ≤ 𝑗 − 1 if 𝑁 ≥ 2.
Next, we prove the estimates in (3.49) hold at 𝑗. The proof for
(3.49b) is similar to that for (3.49a), we will skip its proof.

Using the similar argument as in Lemma 3.9, we have that||𝜉𝑖||𝐻−1(Ω), ||𝜎̃𝑖||, 𝑖 = 1, . . . , 𝑁 are uniformly bounded. When ℎ ≤
ℎ0 for some ℎ0, it follows that ||𝜉𝑖,𝑛||𝐻−1(Ω), ||𝜎̃𝑖,𝑛||, 1 ≤ 𝑖 ≤ 𝑗 − 1 are
also uniformly bounded.

The difference of the 𝜉𝑗 − 𝜉𝑗,𝑛, 𝑗 = 2, . . . , 𝑁 , gives

𝜉𝑗 − 𝜉𝑗,𝑛 = 𝜉𝑗 − 𝜉𝑗,𝑛 −
𝑗−1∑
𝑖=1

( (∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖||2 𝜉𝑖 −
(∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖,𝑛||2 𝜉𝑖,𝑛

)

=
(
𝜉𝑗 − 𝜉𝑗,𝑛

)
−
𝑗−1∑
𝑖=1

(
(∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2𝜉𝑖

−(∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2𝜉𝑖,𝑛)||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 . (3.50)

By (3.41), 1||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 are uniformly bounded. We denote by

(∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2𝜉𝑖 − (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2𝜉𝑖,𝑛
= (∇𝜎𝑗 − ∇𝜎𝑗,𝑛,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2𝜉𝑖
+ (∇𝜎𝑗,𝑛,∇𝜎̃𝑖 − ∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖,𝑛||2𝜉𝑖
+ (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)(||∇𝜎̃𝑖,𝑛||2 − ||∇𝜎̃𝑖||2)𝜉𝑖
+ (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2(𝜉𝑖 − 𝜉𝑖,𝑛)

∶= 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4.

By (3.50), it follows

||𝜉𝑗 − 𝜉𝑗,𝑛||𝐻−1(Ω) ≤ ||𝜉𝑗 − 𝜉𝑗,𝑛||𝐻−1(Ω)

+
𝑗−1∑
𝑖=1

‖‖‖(∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2𝜉𝑖 − (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2𝜉𝑖,𝑛‖‖‖𝐻−1(Ω)||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 .

From (3.9d), we have

||𝜉𝑗 − 𝜉𝑗,𝑛||𝐻−1(Ω) ≤ 𝐶ℎ2 min{𝛼,1} (3.51)

By taking 𝜙 = 𝜎𝑗 − 𝜎𝑗,𝑛 ∈ 𝐻1
0 (Ω) in (3.13), we have

(∇𝜎𝑗 − ∇𝜎𝑗,𝑛,∇𝜎̃𝑖) = ⟨𝜎𝑗 − 𝜎𝑗,𝑛, 𝜉𝑖⟩ (3.52)

which implies that

𝑇1 = ⟨𝜎𝑗 − 𝜎𝑗,𝑛, 𝜉𝑖⟩||∇𝜎̃𝑖,𝑛||2𝜉𝑖
= ⟨𝑟min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛), 𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖⟩||∇𝜎̃𝑖,𝑛||2𝜉𝑖.

By Lemma 3.10, we have 𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖 ∈ 𝐿2(Ω). Therefore, we
have the estimate

||𝑇1||𝐻−1(Ω) ≤ ||𝑟min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛)||||𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖||||∇𝜎̃𝑖,𝑛||2||𝜉𝑖||𝐻−1(Ω)

≤ 𝐶ℎmin{1+𝛽𝑖 ,𝛼}+min{1+𝛽𝑗 ,𝛼}

= 𝐶ℎmin{1+𝛽𝑗+min{𝛼,1},2𝛼},

where we have used the estimate (3.32c).

12 of 22 Numerical Methods for Partial Differential Equations, 2025
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Subtracting Equation (3.20) from Equation (3.13) and setting 𝜙 =
𝜎𝑗,𝑛 yields

(∇𝜎𝑗,𝑛,∇𝜎̃𝑖 − ∇𝜎̃𝑖,𝑛) = ⟨𝜎𝑗,𝑛, 𝜉𝑖 − 𝜉𝑖,𝑛⟩.
Thus, we have by the assumption,

||𝑇2||𝐻−1(Ω) ≤ ||𝜎𝑗,𝑛||||𝜉𝑖 − 𝜉𝑖,𝑛||𝐻−1(Ω)||∇𝜎̃𝑖,𝑛||2||𝜉𝑖||𝐻−1(Ω)

≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

We have by (3.13) and (3.20),

||∇𝜎̃𝑖,𝑛||2 − ||∇𝜎̃𝑖||2 = ⟨𝜎̃𝑖,𝑛, 𝜉𝑖,𝑛⟩ − ⟨𝜎̃𝑖, 𝜉𝑖⟩
= ⟨𝜎̃𝑖,𝑛 − 𝜎̃𝑖, 𝜉𝑖,𝑛⟩ + ⟨𝜎̃𝑖, 𝜉𝑖,𝑛 − 𝜉𝑖⟩ ∶= 𝑇31 + 𝑇32.

By the assumption for (3.49c), we have

|𝑇31| = |⟨𝜎̃𝑖,𝑛 − 𝜎̃𝑖, 𝜉𝑖,𝑛⟩|
≤ ||𝑟min{𝛼−1,𝛽𝑖}(𝜎̃𝑖,𝑛 − 𝜎̃𝑖)||||𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖,𝑛||
≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

For the second term, we have by the assumption for (3.49a),

|𝑇32| = |⟨𝜎̃𝑖, 𝜉𝑖,𝑛 − 𝜉𝑖⟩| ≤ ||𝜎̃𝑖||𝐻1(Ω)||𝜉𝑖,𝑛 − 𝜉𝑖||𝐻−1(Ω)

≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

The estimates of |𝑇31| and |𝑇32| imply that

||𝑇3||𝐻−1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

Again by the assumption for (3.49a), we have

||𝑇4||𝐻−1(Ω) ≤ ||∇𝜎𝑗,𝑛||||∇𝜎̃𝑖,𝑛||||∇𝜎̃𝑖||2||𝜉𝑖 − 𝜉𝑖,𝑛||𝐻−1(Ω)

≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

Note that 𝛽𝑖 > 𝛽𝑗 , we have

4∑
𝑙=1

||𝑇𝑙||𝐻−1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑗+min{𝛼,1},2𝛼} (3.53)

The combination of (3.51) and (3.53) indicate that (3.49a) holds
at 𝑗, so that the method of induction state that (3.49a) holds for
𝑖 = 1, . . . , 𝑁 .

Next, we prove the estimate (3.49c) holds at 𝑗. For 𝑗 = 2, . . . , 𝑁 ,
we have

𝑟min{𝛼−1,𝛽𝑘}(𝜎̃𝑗 − 𝜎̃𝑗,𝑛) = 𝑟min{𝛼−1,𝛽𝑘}(𝜎𝑗 − 𝜎𝑗,𝑛)

− 𝑟min{𝛼−1,𝛽𝑘}
𝑗−1∑
𝑖=1

( (∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖||2 𝜎̃𝑖 −
(∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖,𝑛||2 𝜎̃𝑖,𝑛

)
= 𝑟min{𝛼−1,𝛽𝑘}

(
𝜎𝑗 − 𝜎𝑗,𝑛

)

−
𝑗−1∑
𝑖=1

(
(∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖

−(∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖,𝑛
)

||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 , (3.54)

where 1 ≤ 𝑘 ≤ 𝑁 . By (3.41), 1||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 are uniformly bounded.
We denote by

(∇𝜎𝑗 ,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖 − (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖,𝑛

= (∇𝜎𝑗 − ∇𝜎𝑗,𝑛,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖

+ (∇𝜎𝑗,𝑛,∇𝜎̃𝑖 − ∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖,𝑛||2𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖

+ (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)(||∇𝜎̃𝑖,𝑛||2 − ||∇𝜎̃𝑖||2)𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖

+ (∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2𝑟min{𝛼−1,𝛽𝑘}(𝜎̃𝑖 − 𝜎̃𝑖,𝑛)

∶= 𝐾1 +𝐾2 +𝐾3 +𝐾4.

By (3.54), it follows

||𝑟min{𝛼−1,𝛽𝑘}(𝜎̃𝑗 − 𝜎̃𝑗,𝑛)|| ≤ ||𝑟min{𝛼−1,𝛽𝑘}
(
𝜎𝑗 − 𝜎𝑗,𝑛

)||
+
𝑗−1∑
𝑖=1

‖‖‖(∇𝜎𝑗,∇𝜎̃𝑖)||∇𝜎̃𝑖,𝑛||2𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖

−(∇𝜎𝑗,𝑛,∇𝜎̃𝑖,𝑛)||∇𝜎̃𝑖||2𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖,𝑛
‖‖‖||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 ,

From (3.32b), we have

||𝑟min{𝛼−1,𝛽𝑘}
(
𝜎𝑗 − 𝜎𝑗,𝑛

)|| ≤ 𝐶ℎmin{1+𝛽𝑘,𝛼}+min{1+𝛽𝑗 ,𝛼} (3.55)

Similar to the estimate of 𝑇1, we have by (3.52),

𝐾1 = ⟨𝑟min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛), 𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖⟩||∇𝜎̃𝑖,𝑛||2𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖.

Since 𝜎̃𝑖 ∈ 𝐻1
0 (Ω) ∩𝐻

min{2+𝛽𝑖,1+𝛼}(Ω), so we have 𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖
∈ 𝐿2(Ω) by Lemma 3.5 or from (3.28). Therefore, we have the
estimate

||𝐾1|| ≤ ||𝑟min{𝛼−1,𝛽𝑖}(𝜎𝑗 − 𝜎𝑗,𝑛)||||𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖||||∇𝜎̃𝑖,𝑛||2||𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖|| ≤ 𝐶ℎmin{1+𝛽𝑖,𝛼}+min{1+𝛽𝑗 ,𝛼}

= 𝐶ℎmin{1+𝛽𝑗+min{𝛼,1},2𝛼},

the last equality is due to the fact that min{1 + 𝛽𝑖, 𝛼} = 𝛼 when
1 ≤ 𝑖 < 𝑁 . Similar to the estimate of 𝑇2, we have

||𝐾2||𝐻−1(Ω) ≤ ||𝜎𝑗,𝑛||||𝜉𝑖 − 𝜉𝑖,𝑛||𝐻−1(Ω)||∇𝜎̃𝑖,𝑛||2
⋅ ||𝑟min{𝛼−1,𝛽𝑘}𝜎̃𝑖|| ≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

The estimates of |𝑇31| and |𝑇32| above also indicate that

||𝐾3|| ≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

By the assumption for (3.49c), we have

||𝐾4|| ≤ ||∇𝜎𝑗,𝑛||||∇𝜎̃𝑖,𝑛||||∇𝜎̃𝑖||2||𝑟min{𝛼−1,𝛽𝑘}(𝜎̃𝑖 − 𝜎̃𝑖,𝑛)||
≤ 𝐶ℎmin{1+𝛽𝑘,𝛼}+min{1+𝛽𝑖,𝛼}.

Note again that 𝛽𝑖 > 𝛽𝑗 , we have

4∑
𝑙=1

||𝐾𝑙|| ≤ 𝐶ℎmin{1+𝛽𝑘,𝛼}+min{1+𝛽𝑗 ,𝛼} (3.56)

The combination of (3.55) and (3.56) indicate that (3.49c) holds
at 𝑗, so that the method of induction state that (3.49c) holds for
𝑖 = 1, . . . , 𝑁 . ◽

Numerical Methods for Partial Differential Equations, 2025 13 of 22
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Note that 𝑣 ∈ 𝐻1+𝛼(Ω), then we have the following estimates for
𝑣𝑛 in (3.2).

Lemma 3.12. Let 𝑣𝑛 ∈ 𝑆𝑛 be the finite element approximation
to (3.2), and 𝑣 be the solution to the Poisson equation in the mixed
formulation (2.42). Then it follows

||𝑣 − 𝑣𝑛||𝐻1(Ω) ≤ 𝐶ℎmin{𝛼,1} (3.57a)

||𝑣 − 𝑣𝑛|| ≤ 𝐶ℎ2 min{𝛼,1} (3.57b)

Proof. Subtracting (2.43b) from (3.2) gives the Galerkin orthog-
onality

𝐴(𝑣 − 𝑣𝑛, 𝜓) = (𝑤 −𝑤𝑛, 𝜓) (3.58)

Let 𝑣𝐼 ∈ 𝑆𝑛 be the nodal interpolation of 𝑣. Set 𝜖 = 𝑣𝐼 − 𝑢, 𝑒 =
𝑣𝐼 − 𝑣𝑛 and take 𝜓 = 𝑒 in the equation above, we have

𝐴(𝑒, 𝑒) = 𝐴(𝜖, 𝑒) + (𝑤 −𝑤𝑛, 𝑒),

which implies

||𝑒||𝐻1(Ω) ≤ ||𝜖||𝐻1(Ω) + ||𝑤 −𝑤𝑛||𝐻−1(Ω),

Using the triangle inequality, it follows

||𝑣 − 𝑣𝑛||𝐻1(Ω) ≤ ||𝑒||𝐻1(Ω) + ||𝜖||𝐻1(Ω)

≤ 𝐶(||𝜖||𝐻1(Ω) + ||𝑤 −𝑤𝑛||𝐻−1(Ω)
)
,

≤ 𝐶(||𝜖||𝐻1(Ω) + ||𝑤 −𝑤𝑛||) ≤ 𝐶ℎmin{𝛼,1},

where we have used the projection error (3.7, 3.9b). To obtain
the 𝐿2 error, we consider the problem (2.6) with 𝑔 = 𝑣 − 𝑣𝑛, then
we have ||𝑣 − 𝑣𝑛||2 = 𝐴(𝑣 − 𝑣𝑛, 𝑧).

Subtract (3.58) from the above equation and set 𝜓 = 𝑧𝐼 , we have

||𝑣 − 𝑣𝑛||2 = 𝐴(𝑣 − 𝑣𝑛, 𝑧 − 𝑧𝐼 ) + (𝑤 −𝑤𝑛, 𝑧𝐼 )

= 𝐴(𝑣 − 𝑣𝑛, 𝑧 − 𝑧𝐼 ) + (𝑤 −𝑤𝑛, 𝑧𝐼 − 𝑧) + (𝑤 −𝑤𝑛, 𝑧)

≤ ||𝑣 − 𝑣𝑛||𝐻1(Ω)||𝑧 − 𝑧𝐼 ||𝐻1(Ω) + ||𝑤 −𝑤𝑛||||𝑧 − 𝑧𝐼 ||
+ ||𝑤 −𝑤𝑛||||𝑧||

≤ 𝐶ℎ2 min{𝛼,1}||𝑧||𝐻1+min{𝛼,1}(Ω) ≤ 𝐶ℎ2 min{𝛼,1}||𝑣 − 𝑣𝑛||,
(3.59)

where in the last inequality we have use the estimates (3.7, 3.9b,
3.57). By the regularity (3.25), we have

||𝑧||𝐻1+min{𝛼,1}(Ω) ≤ 𝐶||𝑣 − 𝑣𝑛||𝐻min{𝛼,1}−1(Ω) ≤ 𝐶||𝑣 − 𝑣𝑛|| (3.60)

(3.59) and (3.60) give the 𝐿2 error estimate (3.57b). ◽

Next, we carry out the error estimate for the finite element
approximation 𝑢𝑛 in (3.6).

Theorem 3.13. Let 𝑢𝑛 ∈ 𝑆𝑛 be the finite element approxima-
tion to (3.6), and 𝑢 be the solution to the sixth-order problem (2.2).
Then it follows

||𝑢 − 𝑢𝑛||𝐻1(Ω) ≤ 𝐶0ℎ +
𝑁∑
𝑖=1
𝐶𝑖ℎ

min{2(1+𝛽𝑖),1} ≤ 𝐶ℎ𝛾 (3.61)

where −1 < 𝛽𝑖 < 1 − 𝑖𝜋

𝜔
, the convergence rate 𝛾 = 1 if 𝑁 = 0,

and𝛾 = min{2(1 + 𝛽𝑁 ), 1} if 1 ≤ 𝑁 ≤ 3, the constants 𝐶 , 𝐶𝑖
depend on the coefficients 𝑐𝑖 in (3.15).

Proof. Subtracting (3.22) from (3.17) gives

𝐴(𝑢 − 𝑢𝑛, 𝜏) = (𝑣 − 𝑣𝑛, 𝜏) −
𝑁∑
𝑖=1

(
𝑐𝑖𝜎̃𝑖 − 𝑐𝑖,𝑛𝜎̃𝑖,𝑛, 𝜏

)
= (𝑣 − 𝑣𝑛, 𝜏) +

𝑁∑
𝑖=1

[
𝑐𝑖,𝑛(𝜎̃𝑖,𝑛 − 𝜎̃𝑖, 𝜏)

+(𝑐𝑖,𝑛 − 𝑐𝑖)(𝜎̃𝑖, 𝜏)
]
. (3.62)

Let 𝑢𝐼 ∈ 𝑆𝑛 be the nodal interpolation of 𝑢. Set 𝜖 = 𝑢𝐼 − 𝑢, 𝑒 =
𝑢𝐼 − 𝑢𝑛 and take 𝜏 = 𝑒 in (3.62), we have

𝐴(𝑒, 𝑒) = 𝐴(𝜖, 𝑒) + (𝑣 − 𝑣𝑛, 𝑒)

+
𝑁∑
𝑖=1

[
𝑐𝑖,𝑛(𝜎̃𝑖,𝑛 − 𝜎̃𝑖, 𝑒) + (𝑐𝑖,𝑛 − 𝑐𝑖)(𝜎̃𝑖, 𝑒)

]
.

Thus, we have

||𝑒||𝐻1(Ω) ≤ 𝐶(||𝜖||𝐻1(Ω) + ||𝑣 − 𝑣𝑛||𝐻−1(Ω)

+
𝑁∑
𝑖=1

[|𝑐𝑖,𝑛|||𝜎̃𝑖 − 𝜎̃𝑖,𝑛||𝐻−1(Ω)

+ |𝑐𝑖 − 𝑐𝑖,𝑛|||𝜎̃𝑖||𝐻−1(Ω)
]
).

Using the triangle inequality and the inequality above, we have

||𝑢 − 𝑢𝑛||𝐻1(Ω) ≤ ||𝑒||𝐻1(Ω) + ||𝜖||𝐻1(Ω)

≤ 𝐶
(||𝜖||𝐻1(Ω) + ||𝑣 − 𝑣𝑛||𝐻−1(Ω) +

𝑁∑
𝑖=1

[|𝑐𝑖,𝑛|||𝜎̃𝑖 − 𝜎̃𝑖,𝑛||𝐻−1(Ω)

+ |𝑐𝑖 − 𝑐𝑖,𝑛|||𝜎̃𝑖||𝐻−1(Ω)

])
. (3.63)

We shall estimate every term in (3.63). Recall the solution 𝑢 ∈
𝐻3(Ω). By the interpolation error estimate (3.7),

||𝜖||𝐻1(Ω) = ||𝑢 − 𝑢𝐼 ||𝐻1(Ω) ≤ 𝐶ℎ||𝑢||𝐻2(Ω) (3.64)

Recall that 𝜋

𝜔
>

1
2

. Thus, choosing 𝛼 = 1∕2 < 𝜋

𝜔
in (3.57b),

we have ||𝑣 − 𝑣𝑛||𝐻−1(Ω) ≤ ||𝑣 − 𝑣𝑛|| ≤ 𝐶ℎ (3.65)

By (3.49b), we have

||𝜎̃𝑖 − 𝜎̃𝑖,𝑛||𝐻−1(Ω) ≤ ||𝜎̃𝑖 − 𝜎̃𝑖,𝑛|| ≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

To obtain the error estimate for the third term in (3.63), we still
need to show that |𝑐𝑖,𝑛| is uniformly bounded. By (3.21), we have

|𝑐𝑖,𝑛| = ||||| ⟨𝑣𝑛, 𝜉𝑖,𝑛⟩⟨𝜎̃𝑖,𝑛, 𝜉𝑖,𝑛⟩
||||| =

||||| (∇𝜎̃𝑖,𝑛,∇𝑣𝑛)(∇𝜎̃𝑖,𝑛,∇𝜎̃𝑖,𝑛)

|||||
≤ ||𝑣𝑛||𝐻1(Ω)||𝜎̃𝑖,𝑛||𝐻1(Ω)||𝜎̃𝑖,𝑛||2𝐻1(Ω)

≤ ||𝑣𝑛||𝐻1(Ω)||𝜎̃𝑖,𝑛||𝐻1(Ω)
, (3.66)

14 of 22 Numerical Methods for Partial Differential Equations, 2025
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where we have used Hölder’s inequality. By the regularity result
(2.45) and the estimate (3.57), we have ||𝑣𝑛||𝐻1(Ω) ≤ 𝐶||𝑓 || when
ℎ ≤ ℎ0 for some ℎ0, which together with (3.40) implies that (3.66)
is uniformly bounded.

Subtracting (3.21) from (3.15) or (3.16) gives

𝑐𝑖 − 𝑐𝑖,𝑛 =
(∇𝑣,∇(𝜎̃𝑖 − 𝜎̃𝑖,𝑛))||∇𝜎̃𝑖||2 +

(∇𝜎̃𝑖,𝑛,∇(𝑣 − 𝑣𝑛))||∇𝜎̃𝑖||2
+

||∇𝜎̃𝑖,𝑛||2 − ||∇𝜎̃𝑖||2||∇𝜎̃𝑖||2||∇𝜎̃𝑖,𝑛||2 (∇𝑣𝑛,∇𝜎̃𝑖,𝑛) ∶= 𝑇1 + 𝑇2 + 𝑇3.

By setting 𝜓 = (𝜎̃𝑖 − 𝜎̃𝑖,𝑛) ∈ 𝐻1
0 (Ω) in (2.43), we obtain

(∇𝑣,∇(𝜎̃𝑖 − 𝜎̃𝑖,𝑛)) = (𝑤, 𝜎̃𝑖 − 𝜎̃𝑖,𝑛).

Thus, we have by (3.49)

||𝑇1|| ≤ ||𝑤||||∇𝜎̃𝑖||2 ||𝜎̃𝑖 − 𝜎̃𝑖,𝑛|| ≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

Subtracting Equation (3.2) from Equation (2.43b) and setting𝜓 =
𝜎̃𝑖,𝑛, we obtain

(∇𝜎̃𝑖,𝑛,∇(𝑣 − 𝑣𝑛)) = (𝑤 −𝑤𝑛,∇𝜎𝑖,𝑛).

Then we have by (3.9b) and taking 𝛼 = 1
2

,

||𝑇2|| ≤ 1||∇𝜎̃𝑖|| ||𝑤 −𝑤𝑛|| ≤ 𝐶ℎ2 min{𝛼,1} = 𝐶ℎ.

Note that

||∇𝜎̃𝑖,𝑛||2 − ||∇𝜎̃𝑖||2 = (∇𝜎̃𝑖,𝑛 − ∇𝜎̃𝑖,∇𝜎̃𝑖,𝑛) + (∇𝜎̃𝑖,𝑛 − ∇𝜎̃𝑖,∇𝜎̃𝑖)

= ⟨𝜉𝑖,𝑛 − 𝜉𝑖, 𝜎̃𝑖,𝑛⟩ + ⟨𝜎̃𝑖,𝑛 − 𝜎̃𝑖, 𝜉𝑖⟩.
By (3.49a), we have

||𝜉𝑖 − 𝜉𝑖,𝑛||𝐻−1(Ω) ≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼} (3.67)

It is easy to check

|⟨𝜉𝑖,𝑛 − 𝜉𝑖, 𝜎̃𝑖,𝑛⟩| ≤ ||𝜉𝑖,𝑛 − 𝜉𝑖||𝐻−1(Ω)||𝜎̃𝑖,𝑛||𝐻1(Ω)

≤ 𝐶ℎmin{1+𝛽𝑖+min{𝛼,1},2𝛼}.

Note that

|⟨𝜎̃𝑖,𝑛 − 𝜎̃𝑖, 𝜉𝑖⟩| = |⟨𝑟min{𝛼−1,𝛽𝑖}(𝜎̃𝑖 − 𝜎̃𝑖,𝑛), 𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖⟩|
≤ ||𝑟min{𝛼−1,𝛽𝑖}(𝜎̃𝑖 − 𝜎̃𝑖,𝑛)||||𝑟−min{𝛼−1,𝛽𝑖}𝜉𝑖||
≤ 𝐶ℎ2 min{1+𝛽𝑖,𝛼}.

The last two inequalities imply that

||𝑇3|| ≤ 𝐶ℎ2 min{1+𝛽𝑖,𝛼}.

Thus, we have

|𝑐𝑖 − 𝑐𝑖,𝑛| ≤ 3∑
𝑙=1

||𝑇𝑙|| ≤ 𝐶ℎ2 min{1+𝛽𝑖,𝛼} (3.68)

TABLE 3 | The value of min{2(1 + 𝛽𝑖), 1} and 𝛾 in Section 3.13 for dif-
ferent 𝜔.

𝝎 (0, 𝝅

2
] ( 𝝅

2
,

2𝝅
3
] ( 2𝝅

3
, 𝝅) (𝝅, 4𝝅

3
] ( 4𝝅

3
,

3𝝅
2
] ( 3𝝅

2
, 2𝝅)

min{2(1 + 𝛽1), 1} — 2(1 + 𝛽1) 1 1 1 1
min{2(1 + 𝛽2), 1} — — — 2(1 + 𝛽2) 1 1
min{2(1 + 𝛽3), 1} — — — — — 2(1 + 𝛽3)
𝛾 1 2(1 + 𝛽1) 1 2(1 + 𝛽2) 1 2(1 + 𝛽3)

FIGURE 2 | The 𝐻1 convergence rate 𝛾 in Section 3.13 for
different 𝜔.

Plugging (3.64), (3.65), (3.67) and (3.68) with 𝛼 = 1
2

into (3.63),
the conclusion holds. ◽

Remark 3.14. For the following cases, we have min{2(1 +
𝛽𝑖), 1} = 1, (i) 1 ≤ 𝑖 < 𝑁 ; (ii) 𝑖 = 𝑁 and 𝛽𝑖 ≥ − 1

2
. To better view||𝑢 − 𝑢𝑛||𝐻1(Ω) in (3.61), we explicitly show the value of min{2(1 +

𝛽𝑖), 1} and the value of 𝛾 in Table 3 and Figure 2.

4 | Numerical Illustrations

In this section, we present numerical test results to validate our
theoretical predictions for Algorithm 3.1 solving the sixth-order
problem (1.1). For comparison, we also implement the finite ele-
ment method for the direct mixed formulation (2.4), referred to
as the direct mixed finite element method. We will utilize the fol-
lowing convergence rate as an indicator of the actual convergence
rate of the exact solutions 𝑢, 𝑣,𝑤 in (2.42) are given, then calculate
the convergence rate by

 = log2
|𝜙 − 𝜙𝑗−1|𝐻1(Ω)|𝜙 − 𝜙𝑗 |𝐻1(Ω)

(4.1)

otherwise,

 = log2
|𝜙𝑗 − 𝜙𝑗−1|𝐻1(Ω)|𝜙𝑗+1 − 𝜙𝑗 |𝐻1(Ω)

(4.2)

Here, 𝜙𝑗 represents the finite element solution on the mesh 𝑗 ,
obtained after 𝑗 refinements of the initial triangulation 0. It
can be either 𝑢𝑗 , 𝑣𝑗 , or 𝑤𝑗 , depending on the underlying Poisson

Numerical Methods for Partial Differential Equations, 2025 15 of 22
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FIGURE 3 | Example 4.1 Test case 1: (a) the domain and the initial mesh; (b) the “spurious solution” 𝑢; (c) the direct mixed finite element solution
𝑢𝑈10; (d) the difference |𝑢 − 𝑢𝑈10|; (e) the solution 𝑢𝐴10 from Algorithm 3.1; (f) the difference |𝑢 − 𝑢𝐴10|.
problem. In particular, suppose the actual convergence rate is|𝜙 − 𝜙𝑗 |𝐻1(Ω) = 𝑂(ℎ𝛽 ) for 𝛽 > 0. Then, for the 𝑃1 finite element
method, the rate in (4.2) is also a good approximation of the expo-
nent 𝛽 as the level of refinements 𝑗 increases [30].

We use the following cut-off function in Algorithm 3.1:

𝜂(𝑟; 𝜏, 𝑅) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if 𝑟 ≥ 𝑅,
1, if 𝑟 ≤ 𝜏𝑅,
1
2
− 15

16

(
2𝑟

𝑅(1−𝜏)
− 1+𝜏

1−𝜏

)
+ 5

8

(
2𝑟

𝑅(1−𝜏)
− 1+𝜏

1−𝜏

)3

− 3
16

(
2𝑟

𝑅(1−𝜏)
− 1+𝜏

1−𝜏

)5
, otherwise.

We set the default parameters 𝑅 = 32
5
, 𝜏 = 1

8
. If a different 𝑅 is

used, it will be specified.

Example 4.1. We solve the problem (1.1) on different
domains using both the direct mixed finite element method and
Algorithm 3.1on quasi-uniform meshes obtained by midpoint
refinements with the given initial mesh. We start with a “wrong
solution” 𝑢 ∉ 𝐻3(Ω),

𝑢(𝑟, 𝜃) = 𝜂̃(𝑟; 𝜏, 𝑅)𝑟
𝜋

𝜔 sin
(
𝜋

𝜔
𝜃

)
(4.3)

where 𝜂̃(𝑟; 𝜏, 𝑅) is also a cut-off function

𝜂̃(𝑟; 𝜏, 𝑅) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑟 > 𝑅,
1, if 𝑟 < 𝜏𝑅,
1
2
+
∑6
𝑖=0𝐶𝑖

(
2𝑟

𝑅(1−𝜏)
− 1+𝜏

1−𝜏

)2𝑖+1
, otherwise,

(4.4)

with 𝑅 = 32
5
, 𝜏 = 1

8
, and the coefficients 𝐶𝑖 are determined by

solving the linear system

𝜂̃(𝑖)(𝑅; 𝜏, 𝑅) = 0, 𝑖 = 0, . . . , 6.

The source term 𝑓 is obtained by calculating

𝑓 = −Δ(Δ(Δ𝑢)),

and it can be verified that 𝑓 ∈ 𝐿2(Ω). Note that 𝑢 ∉ 𝐻3(Ω) and
therefore 𝑢 is not the solution of the weak formulation (2.2)
because the “true solution” should be a function in 𝐻3(Ω). The
purpose of this example is to test the convergence of the finite ele-
ment method for the direct mixed formulation and Algorithm 3.1
to the “spurious solution” 𝑢 in (4.3).

Test case 1. Take Ω as the triangle ▵ 𝑄𝑄1𝑄2 with 𝑄(0, 0),
𝑄1(16, 0) and 𝑄2(−8, 8

√
3). The domain Ω with the initial mesh

is shown in Figure 3a, and the “spurious solution” 𝑢 is shown in
Figure 3b. Here, 𝜔 = ∠𝑄1𝑄𝑄2 = 2𝜋

3
∈ ( 𝜋

2
, 𝜋).

The direct mixed finite element solution 𝑢𝑈10 and the difference|𝑢 − 𝑢𝑈10| are shown in Figure 3c,d, respectively. The error ||𝑢 −
𝑢𝑈
𝑗
||𝐻1(Ω) is shown in Table 4. These results indicate that the direct

mixed finite element solution converges to the “spurious solu-
tion” 𝑢 ∉ 𝐻3(Ω). On the other hand, since 𝜔 = 2𝜋

3
∈ ( 𝜋

2
, 𝜋), so it

follows 𝑁 = 1 in Algorithm 3.1 by checking Table 1. The solu-
tion 𝑢𝐴10 from Algorithm 3.1and the difference |𝑢 − 𝑢𝐴10| are shown
in Figure 3e,f, respectively. The error ||𝑢 − 𝑢𝐴

𝑗
||𝐻1(Ω) is shown in

Table 4. These results imply that the solution of Algorithm 3.1
does not converge to the “spurious solution”, since the solution
of Algorithm 3.1 converges to the solution in 𝐻3(Ω) as stated in
Theorem 2.17.

Test case 2. Here, we consider the domain Ω to be the
polygon with vertices 𝑄(0, 0), 𝑄1(

16
√

3
3
, 0), 𝑄2(

16−8
√

2
1+

√
3
,

16−8
√

2
1+

√
3

+

8
√

2), 𝑄3(−8
√

2+ 2
√

3
2

1+ 1√
3

, 8
√

2 − 8
√

2+ 2
√

3
2

1+ 1√
3

) and 𝑄4(−
8
3
,−4

√
3). Then

we have 𝜔 = ∠𝑄1𝑄𝑄4 ≈ 1.383𝜋 ∈ (𝜋, 3𝜋
2
). The domain Ω with

the initial mesh is shown in Figure 4a, and the “spurious solu-
tion” 𝑢 is shown in Figure 4b.

The direct mixed finite element solution 𝑢𝑈10 and the differ-
ence |𝑢 − 𝑢𝑈10| are shown in Figure 4c,d, respectively. The error
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TABLE 4 | The𝐻1 error of the numerical solutions on quasi-uniform meshes.

𝒋 = 7 𝒋 = 8 𝒋 = 9 𝒋 = 10||𝑢 − 𝑢𝑈
𝑗
||𝐻1(Ω) 2.74964e-01 1.35594e-01 6.77391e-02 3.38605e-02||𝑢 − 𝑢𝐴

𝑗
||𝐻1(Ω) 6.07564 6.02331 6.00958 6.00306

FIGURE 4 | Example 4.1 Test case 2: (a) the domain and the initial mesh; (b) the “spurious solution” 𝑢; (c) the direct mixed finite element solution
𝑢𝑈10; (d) the difference |𝑢 − 𝑢𝑈10|; (e) the solution 𝑢𝐴10 from Algorithm 3.1; (f) the difference |𝑢 − 𝑢𝐴10|.
TABLE 5 | The𝐻1 error of the numerical solutions on quasi-uniform meshes.

𝒋 = 7 𝒋 = 8 𝒋 = 9 𝒋 = 10||𝑢 − 𝑢𝑈
𝑗
||𝐻1(Ω) 1.43517e-01 7.44186e-02 3.94988e-02 2.13310e-02||𝑢 − 𝑢𝐴

𝑗
||𝐻1(Ω) 4.08611 4.08457 4.08383 4.08329

||𝑢 − 𝑢𝑈
𝑗
||𝐻1(Ω) is shown in Table 5. These results imply that the

direct mixed finite element solution converges to the “spurious
solution” 𝑢 ∉ 𝐻3(Ω). On the other hand, since 𝜔 ∈ (𝜋, 3𝜋

2
), we

have 𝑁 = 2 in Algorithm 3.1. The solution 𝑢𝐴10 of Algorithm 3.1
and the difference |𝑢 − 𝑢𝐴10| are shown in Figure 4e,f, respectively.
The error ||𝑢 − 𝑢𝐴

𝑗
||𝐻1(Ω) is shown in Table 5. These results imply

that the solution of Algorithm 3.1 does not converge to the “spu-
rious solution.”

Test case 3. Consider the polygonal domain Ω with
vertices 𝑄(0, 0), 𝑄1(

16
√

3
3
, 0), 𝑄2(

16−8
√

2
1+

√
3
,

16−8
√

2
1+

√
3

+ 8
√

2),

𝑄3(−8
√

2+ 2
√

3
2

1+ 1√
3

, 8
√

2 − 8
√

2+ 2
√

3
2

1+ 1√
3

) and 𝑄4(4,−8
√

3). Then we

have 𝜔 = ∠𝑄1𝑄𝑄4 ≈ 1.589𝜋 ∈ ( 3𝜋
2
, 2𝜋). The domain Ω with the

initial mesh is shown in Figure 5a, and the “spurious solution” 𝑢
is shown in Figure 5b.

The direct mixed finite element solution 𝑢𝑈10 and the differ-
ence |𝑢 − 𝑢𝑈10| are shown in Figure 5c,d, respectively. The error||𝑢 − 𝑢𝑈

𝑗
||𝐻1(Ω) is shown in Table 6. These results continue to

indicate that the direct mixed finite element solution con-
verges to the “spurious solution” 𝑢 ∉ 𝐻3(Ω). On the other
hand, since 𝜔 ∈ ( 3𝜋

2
, 2𝜋), it follows 𝑁 = 3 in Algorithm 3.1.

The solution 𝑢𝐴10 of Algorithm 3.1 and the difference |𝑢 −
𝑢𝐴10| are shown in Figure 5e,f, respectively. The error ||𝑢 −
𝑢𝐴
𝑗
||𝐻1(Ω) is shown in Table 6. These results confirm that the

solution of Algorithm 3.1 does not converge to the “spurious
solution.”

Example 4.2. We solve the triharmonic problem in
Example 4.1 again using the direct mixed finite element method
and Algorithm 3.1 on quasi-uniform meshes. Here, we take
the solution 𝑢𝑒𝑥 of the following Poisson problem as the exact
solution,

Numerical Methods for Partial Differential Equations, 2025 17 of 22
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FIGURE 5 | Example 4.1 Test Case 3: (a) the domain and the initial mesh; (b) the “spurious solution” 𝑢; (c) the direct mixed finite element solution
𝑢𝑈10; (d) the difference |𝑢 − 𝑢𝑈10|; (e) the solution 𝑢𝐴10 from Algorithm 3.1; (f) the difference |𝑢 − 𝑢𝐴10|.
TABLE 6 | The𝐻1 error of the numerical solutions on quasi-uniform meshes.

𝒋 = 7 𝒋 = 8 𝒋 = 9 𝒋 = 10||𝑢 − 𝑢𝑈
𝑗
||𝐻1(Ω) 1.474223e-01 8.67096e-02 5.25520e-02 3.25455e-02||𝑢 − 𝑢𝐴

𝑗
||𝐻1(Ω) 3.863711 3.85981 3.85832 3.85767

− Δ𝑢𝑒𝑥 = 𝑓0 −
𝑁∑
𝑖=1
𝑐𝑖𝜎𝑖 in Ω, 𝑢𝑒𝑥 = 0 on 𝜕Ω (4.5)

where

𝑓0 = −Δ
(
𝜂̃(𝑟; 𝜏, 𝑅)𝑟

𝑁𝜋

𝜔 sin
(
𝑁𝜋

𝜔
𝜃

))
∈ 𝐻1

0 (Ω),

with 𝜂̃(𝑟; 𝜏, 𝑅) given in (4.4), 𝜎𝑖 given in (2.18), and 𝑐𝑖 is the solu-
tion of the linear system (2.39). Note that the function 𝑓0 = −Δ𝑢
for 𝑢 in (4.3). By Lemma 2.12, we have 𝑢𝑒𝑥 ∈ 𝐻3(Ω) and it satisfies

−Δ3𝑢𝑒𝑥 = −Δ2(Δ𝑢𝑒𝑥) = Δ2𝑓0 −
𝑁∑
𝑖=1
𝑐𝑖Δ2𝜎𝑖 = Δ2𝑓0 = −Δ2(Δ𝑢)

= −Δ(Δ(Δ𝑢)) = 𝑓,

where we have used the result in Lemma 2.8. Here, the source
term 𝑓 is the same as that in Example 4.1. The purpose of this
example is to test the convergence of the direct mixed finite ele-
ment method and Algorithm 3.1 to the exact solution 𝑢𝑒𝑥 in (4.5).

From Test case 2 to Test case 4, we will use the finite element
method solution 𝑢𝑒𝑥𝑛 (instead of using the complicated notation
𝑢𝑒𝑥,𝑛+1) of (4.5) on mesh 𝑛+1 as an approximation of 𝑢𝑒𝑥.

Test case 1. TakeΩ as the triangle▵ 𝑄𝑄1𝑄2 with𝑄(0, 0),𝑄1(8, 0)
and 𝑄2(4, 4

√
3). In this case, the exact solution 𝑢𝑒𝑥 = 𝑢 for a

given 𝑢 in (4.3), and its contour is given in Figure 6a. Here,
𝜔 = ∠𝑄1𝑄𝑄2 = 𝜋

3
∈ (0, 𝜋

2
). Thus, Algorithm 3.1 coincides with

the direct mixed finite element method. The solution 𝑢𝐴10(= 𝑢
𝑈
10)

from Algorithm 3.1 and the difference |𝑢 − 𝑢𝐴10| are shown in
Figure 6b,c, respectively. The error ||𝑢 − 𝑢𝐴

𝑗
||𝐻1(Ω) and conver-

gence rate  are shown in Table 7. These results show that the
solution of Algorithm 3.1 converges to the exact solution in the
optimal convergence rate  = 1, which coincides with the result
in Theorem 3.13 or Table 3.

Test case 2. We consider the same domain and initial mesh
(see Figure 3a) as Test case 1 in Example 4.1. Note that 𝜔 =
∠𝑄1𝑄𝑄2 = 2𝜋

3
∈ ( 𝜋

2
, 𝜋). The finite element solution 𝑢𝑒𝑥𝑛 of the

exact solution 𝑢𝑒𝑥 is shown in Figure 7a. The direct mixed
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FIGURE 6 | Example 4.2 Test case 1: (a) the exact solution 𝑢; (b) the solution 𝑢𝐴10 from Algorithm 3.1; (c) the difference |𝑢 − 𝑢𝐴10|.
TABLE 7 | The𝐻1 error and convergence rate  for Example 4.2 Test case 1.

𝒋 = 5 𝒋 = 6 𝒋 = 7 𝒋 = 8||𝑢 − 𝑢𝐴
𝑗
||𝐻1(Ω) 1.09202 5.45465e-01 2.72663e-01 1.36323e-01

 — 1.00 1.00 1.00

FIGURE 7 | Example 4.2 Test case 2: (a) the exact solution approximation 𝑢; (b) the difference |𝑢𝑒𝑥𝑛 − 𝑢𝑈10|; (c) the difference |𝑢𝑒𝑥𝑛 − 𝑢𝐴10|.
TABLE 8 | The𝐻1 error of the numerical solutions on quasi-uniform
meshes.

𝒋 = 6 𝒋 = 7 𝒋 = 8 𝒋 = 9||𝑢𝑒𝑥𝑛 − 𝑢𝑈𝑗 ||𝐻1(Ω) 5.98206 6.01120 6.00363 5.99948||𝑢𝑒𝑥𝑛 − 𝑢𝐴𝑗 ||𝐻1(Ω) 5.67208e-02 1.47272e-02 6.62074e-03 3.43917e-03

finite element solution 𝑢𝑈10 and the difference |𝑢𝑒𝑥𝑛 − 𝑢𝑈10| are
shown in Figures 3c and 7b, respectively. The error ||𝑢𝑒𝑥𝑛 −
𝑢𝑈
𝑗
||𝐻1(Ω) is shown in Table 8. These results indicate that the

direct mixed finite element solution does not converge to the
exact solution. Note that 𝑁 = 1 in Algorithm 3.1, the solution
𝑢𝐴10 from Algorithm 3.1 and the difference |𝑢𝑒𝑥𝑛 − 𝑢𝐴10| are shown
in Figures 3e and 7c, respectively. The error ||𝑢𝑒𝑥𝑛 − 𝑢𝐴𝑗 ||𝐻1(Ω)
is shown in Table 8. These results imply that the solution of
Algorithm 3.1 converges to the exact solution.

Test case 3. We consider the same domain and initial mesh
(see Figure 4a) as Test case 2 in Example 4.1. Recall that 𝜔 =
∠𝑄1𝑄𝑄4 ≈ 1.383𝜋 ∈ (𝜋, 3𝜋

2
). The exact solution 𝑢𝑒𝑥𝑛 is shown in

Figure 8a. The direct mixed finite element solution 𝑢𝑈10 and the
difference |𝑢𝑒𝑥𝑛 − 𝑢𝑈10| are shown in Figures 4c and 8b, respec-
tively. The error ||𝑢𝑒𝑥𝑛 − 𝑢𝑈𝑗 ||𝐻1(Ω) is shown in Table 9. These
results indicate that the direct mixed finite element solution
does not converge to the exact solution. Note that 𝑁 = 2 in

Algorithm 3.1 in this case. The solution 𝑢𝐴10 of Algorithm 3.1
and the difference |𝑢𝑒𝑥𝑛 − 𝑢𝐴10| are shown in Figures 4e and 8c,
respectively. The error ||𝑢𝑒𝑥𝑛 − 𝑢𝐴𝑗 ||𝐻1(Ω) is shown in Table 9. These
results also imply that the solution of Algorithm 3.1 converges to
the exact solution.

Test case 4. We consider the same domain and initial mesh
(see Figure 5a) as Test case 3 in Example 4.1. Recall that
𝜔 = ∠𝑄1𝑄𝑄4 ≈ 1.589𝜋 ∈ ( 3𝜋

2
, 2𝜋). The approximation 𝑢𝑒𝑥𝑛 of

the exact solution is shown in Figure 9a. The direct mixed finite
element solution 𝑢𝑈10 and the difference |𝑢𝑒𝑥𝑛 − 𝑢𝑈10| are shown
in Figures 5c and 9b, respectively. The error ||𝑢𝑒𝑥𝑛 − 𝑢𝑈𝑗 ||𝐻1(Ω)
is shown in Table 6. These results continue to indicate that
the direct mixed finite element solution does not converge
to the exact solution. Note that 𝑁 = 3 in Algorithm 3.1, the
solution 𝑢𝐴10 of Algorithm 3.1 and the difference |𝑢𝑒𝑥𝑛 − 𝑢𝐴10|
are shown in Figures 5e and 9c, respectively. The error||𝑢𝑒𝑥𝑛 − 𝑢𝐴𝑗 ||𝐻1(Ω) is shown in Table 10. These results confirm
that the solution of Algorithm 3.1 converges to the exact
solution.

Example 4.3. In this example, we investigate the conver-
gence of Algorithm 3.1 by considering equation (1.1) with 𝑓 =
sin

(
𝑁𝜋

𝜔
𝜃

)
on different domains with angle 𝜔 categorized in

Theorem 3.13 or Table 3, where 𝑁 is shown in Table 1. For
𝜔 <

𝜋

2
, the numerical test on convergence rate can be found in

Numerical Methods for Partial Differential Equations, 2025 19 of 22
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FIGURE 8 | Example 4.2 Test case 3: (a) the exact solution u; (b) the difference |𝑢𝑒𝑥𝑛 − 𝑢𝑈10|; (c) the difference |𝑢𝑒𝑥𝑛 − 𝑢𝐴10|.
TABLE 9 | The𝐻1 error of the numerical solutions on quasi-uniform meshes.

𝒋 = 6 𝒋 = 7 𝒋 = 8 𝒋 = 9||𝑢𝑒𝑥𝑛 − 𝑢𝑈𝑗 ||𝐻1(Ω) 9.67666 9.64665 9.63404 9.63164||𝑢𝑒𝑥𝑛 − 𝑢𝐴𝑗 ||𝐻1(Ω) 5.27303e-02 2.09405e-02 1.01081e-02 4.20655e-03

FIGURE 9 | Example 4.2 Test case 4: (a) the exact solution 𝑢; (b) the difference |𝑢𝑒𝑥𝑛 − 𝑢𝑈10|; (c) the difference |𝑢𝑒𝑥𝑛 − 𝑢𝐴10|.
TABLE 10 | The 𝐻1 error of the numerical solutions on
quasi-uniform meshes.

𝒋 = 6 𝒋 = 7 𝒋 = 8 𝒋 = 9||𝑢𝑒𝑥𝑛 − 𝑢𝑈𝑗 ||𝐻1(Ω) 7.47470 6.98223 6.60342 6.31031||𝑢𝑒𝑥𝑛 − 𝑢𝐴𝑗 ||𝐻1(Ω) 6.79611e-01 4.98616e-01 3.78626e-01 2.93364e-01

Example 4.2Test case 1. In the rest of this example, we focus on
𝜔 >

𝜋

2
.

Test case 1. Take Ω as the triangle ▵ 𝑄𝑄1𝑄2 with 𝑄(0, 0),
𝑄1(16, 0) and 𝑄2(16𝑥0, 16

√
1 − 𝑥2

0) for some |𝑥0| < 1. The con-
vergence rates for different 𝜔 = ∠𝑄1𝑄𝑄2 ∈ ( 𝜋

2
, 𝜋) determined by

choosing different 𝑥0 are shown in Table 11. Here, 𝑅 = 24
5

, 𝜏 = 1
8

are used when 𝑥0 = −0.8, and default values are used for other
cases. The results show that the convergence rate is not opti-
mal when 𝜔 < 2𝜋

3
, and it is optimal when 𝜔 ∈ [ 2𝜋

3
, 𝜋). These

results are consistent with the expected convergence rate  in
Theorem 3.13 or Table 3 for 𝜔 ∈ ( 𝜋

2
, 𝜋).

Test case 2. We consider the polygon Ω with vertices 𝑄(0, 0),
𝑄1(16, 0), 𝑄2(−8, 8

√
3), and 𝑄3(−8,−8𝑦0

√
3) for some 𝑦0 ∈

(0, 1], which gives 𝜔 = ∠𝑄1𝑄𝑄3 ∈ (𝜋, 4𝜋
3
]. We then consider the

domain Ω (see Figure 5a) presented in Example 4.1 Test case 2,
and the corresponding angle 𝜔 ∈ ( 4𝜋

3
,

3𝜋
2
). The convergence rates

for different 𝜔 ∈ (𝜋, 3𝜋
2
) are shown in Table 12. The results show

that the convergence rate is not optimal when 𝜔 < 4𝜋
3

, and it
is optimal when 𝜔 ∈ [ 4𝜋

3
,

3𝜋
2
). These results are consistent with

the expected convergence rate in Theorem 3.13 or Table 3 for
𝜔 ∈ (𝜋, 3𝜋

2
).

Test case 3. We consider the polygon Ω with vertices 𝑄(0, 0),

𝑄1(
16
√

3
3
, 0), 𝑄2(

16−8
√

2
1+

√
3
,

16−8
√

2
1+

√
3

+ 8
√

2), 𝑄3(−8
√

2+ 2
√

3
2

1+ 1√
3

, 8
√

2 −

8
√

2+ 2
√

3
2

1+ 1√
3

), and 𝑄4(𝑥1,−8
√

3) for some 𝑥1 ∈ (0, 8
√

3], which

generates 𝜔 = ∠𝑄1𝑄𝑄4 ∈ ( 3𝜋
2
,

7𝜋
4
]. The convergence rates for

different 𝜔 ∈ ( 3𝜋
2
, 2𝜋) are shown in Table 13. These results are

consistent with the expected convergence rate in Theorem 3.13
or Table 3 for 𝜔 ∈ ( 3𝜋

2
, 2𝜋).
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TABLE 11 | The𝐻1 error for 𝜔 ∈ ( 𝜋
2
, 𝜋) on quasi-uniform meshes.

Parameter 𝒙0 𝝎 Expected rate 𝒋 = 7 𝒋 = 8 𝒋 = 9 𝒋 = 10

−0.2 ≈ 0.56409𝜋 0.46 0.75 0.67 0.59 0.54
−0.4 ≈ 0.63099𝜋 0.83 0.96 0.95 0.94 0.93
−0.5 2𝜋

3
1.00 1.03 1.01 1.00 1.00

−0.6 ≈ 0.70483𝜋 1.00 1.01 1.01 1.01 1.00
−0.8 ≈ 0.79517𝜋 1.00 1.02 1.01 1.01 1.00

TABLE 12 | The𝐻1 error for 𝜔 ∈ (𝜋, 3𝜋
2
) on quasi-uniform meshes.

Parameter 𝒚0 or domain 𝝎 Expected rate 𝒋 = 6 𝒋 = 7 𝒋 = 8 𝒋 = 9

0.2 ≈ 1.10615𝜋 0.38 0.82 0.72 0.62 0.53
0.6 ≈ 1.25612𝜋 0.82 0.96 0.95 0.94 0.93
0.8 ≈ 1.30101𝜋 0.93 0.98 0.98 0.98 0.98
1.0 4𝜋

3
1.00 1.00 1.00 1.00 1.00

Ω in Figure 5a ≈ 1.38305𝜋 1.00 1.02 1.02 1.01 1.01

TABLE 13 | The𝐻1 error for 𝜔 ∈ ( 3𝜋
2
, 2𝜋) on quasi-uniform meshes.

𝒙1 or domain 𝝎 Expected rate 𝒋 = 6 𝒋 = 7 𝒋 = 8 𝒋 = 9

𝑥1 = 4 ≈ 1.58946𝜋 0.23 0.87 0.76 0.63 0.50
𝑥1 = 8 5𝜋

3
0.40 0.83 0.75 0.65 0.60

𝑥1 = 8
√

3 7𝜋
4

0.57 0.87 0.82 0.77 0.71
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