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 a b s t r a c t

In this paper, we propose an efficient adaptive algorithm for the photon-electron coupled Boltz-
mann equations in radiation therapy. The algorithm employs adaptive mesh technologies for both 
angular and spatial discretization and effectively solves the equation across various domains with 
a reduced number of degrees of freedom and computational time while maintaining accuracy. For 
spatial discretization, we employ an adaptive discontinuous Galerkin scheme based on material 
redefinition to automatically conduct adaptive refinement during the computation process. For 
angular discretization, we utilize high-order discretization near the incident direction, while low-
order discretization is applied to other directions. We compare its performance with the classical 
Monte Carlo simulations for both mono-energetic and multi-energetic photon beams in various 
media. Numerical results demonstrate the efficiency and accuracy of the algorithm.

1.  Introduction

The transport process refers to the random statistical motion of particles caused by irregular collisions with nuclei, forming the 
basis of transport theory [1]. This theory is widely applied to describe the transport processes of neutrons, photons, electrons, and 
molecules within a medium, as well as to study the non-equilibrium statistical behavior of large particle populations. Our study 
focuses on the application of transport theory in radiation therapy, a primary cancer treatment that benefits approximately 50% of 
cancer patients [2], with photon radiation therapy being the most commonly used method in clinical practice. High-energy particles 
are delivered to the tumor target area via an external radiation source to eradicate the tumor. However, these particles can also 
inflict significant radiation-induced damage on surrounding healthy tissues, potentially imposing life-threatening risks. Therefore, 
it is crucial to accurately calculate the dose distribution within the body to maximize tumor destruction while minimizing harm to 
adjacent normal tissues.

The particle transport process in radiation therapy is mathematically described by the linear Boltzmann transport (LBT) equation, 
an integro-differential equation governing flux density. A widely used method for solving this equation is the Monte Carlo (MC) 
algorithm, which can provide highly accurate solutions for arbitrary geometries. However, the MC algorithm’s extensive computation 
times, especially for complex geometries, can limit its clinical applicability. An alternative approach is to solve the LBT equation 
deterministically by discretizing variables such as space (using finite difference or finite element methods), angle (using discrete 
ordinates), and energy (using multigroup techniques). Deterministic methods offer faster solutions within the computational domain, 
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facilitating accurate dose distribution. In recent years, these methods [3,4] have taken more attention for their efficiency. Additionally, 
significant research has focused on particle transport processes influenced by magnetic fields, with notable contributions by Aubin et 
al. [5–9]. These studies further expand the understanding and potential applications of transport theory in radiation therapy.

In this work, we employ discontinuous Galerkin (DG) methods for the spatial discretization of the photon-electron coupled Boltz-
mann equation. DG methods are particularly effective for handling complex boundary conditions and mesh adaptation, enabling a 
significant reduction in the degrees of freedom of the discrete LBT system. Previous works have demonstrated DG methods in similar 
LBT models: Decaria et al. [10] applied DG method on the linear Boltzmann semiconductor model. Ghattassi et al. [11] used it to solve 
the nonlinear radiative-conductive heat transfer systems. Han [12] et al. study discrete-ordinate discontinuous Galerkin methods for 
solving the radiative transfer equation. Houston et al. [13] introduce an hp-version discontinuous Galerkin finite element method for 
the linear Boltzmann transport problem.

In this paper, we propose a novel algorithm for solving the photon-electron coupled Boltzmann equation, leveraging adaptive 
mesh technology for both angular and spatial discretization. The resulting scheme achieves efficient solutions across diverse domains 
enabling to minimize the degrees of freedom while maintaining high accuracy. Our results demonstrate excellent agreement between 
the benchmark and our proposed algorithm. For regions where the dose exceeds 10% of the maximum dose, gamma indices [14] 
achieve at least 92% and 95% under 2%/2mm and 2%/3mm DTA criteria, respectively, for all test models. The key highlights of 
this study are centered as follows:

1. An adaptive DG scheme based on material redefinition is proposed to automatically conduct adaptive refinement during the 
computation process. This adaptive approach is entirely objective.

2. An adaptive technique is applied to angular discretization, utilizing high-order discretization near the incident directions and 
low-order discretization for other directions.

The outline of this manuscript is organized as follows: Section 2 presents the equation to be solved and some basic processing 
before discretization. Detailed discretization methods are introduced in Section 3. In Section 4, numerical examples are shown to 
demonstrate the efficiency of our algorithm. Finally, the conclusion and outlook are given in Section 5.

2.  Model equations

In photon transport, the photon-electron coupled linear Boltzmann transport equations for solving flux densities of photons and 
electrons, 𝜓𝛾 (𝑟, 𝐸, Ω̂) and 𝜓𝑒(𝑟, 𝐸, Ω̂), are given by 

⎧

⎪

⎨

⎪

⎩

Ω̂ ⋅ ∇𝜓𝛾 (𝑟, 𝐸, Ω̂) + 𝜎𝛾𝑡 (𝑟, 𝐸)𝜓
𝛾 (𝑟, 𝐸, Ω̂) = 𝑞𝛾𝛾 (𝑟, 𝐸, Ω̂) + 𝑆(𝑟, 𝐸, Ω̂), 𝑟 ∈ 𝐷,

Ω̂ ⋅ ∇𝜓𝑒(𝑟, 𝐸, Ω̂) + 𝜎𝑒𝑡 (𝑟, 𝐸)𝜓
𝑒(𝑟, 𝐸, Ω̂) = 𝑞𝑒𝑒(𝑟, 𝐸, Ω̂) + 𝑞𝛾𝑒(𝑟, 𝐸, Ω̂), 𝑟 ∈ 𝐷,

𝜓𝛾 (𝑟, 𝐸, Ω̂) = 0, 𝜓𝑒(𝑟, 𝐸, Ω̂) = 0, on 𝜕𝐷− = {𝑟 ∶ 𝑛(𝑟) ⋅ Ω̂ < 0},

(1)

with

𝑞𝑝1𝑝2 (𝑟, 𝐸, Ω̂) = ∫

∞

0
𝑑𝐸′

∫4𝜋
𝜎𝑝1𝑝2𝑠 (𝑟, 𝐸′ → 𝐸, Ω̂ ⋅ Ω̂′)𝜓𝑝1 (𝑟, 𝐸′, Ω̂′)𝑑Ω̂′,

where 𝑝1, 𝑝2 = 𝛾, 𝑒, the notation ⃗𝑟 is a point in 3D Euclidean space 𝐷, energy 𝐸 moving in direction Ω̂ = (𝜇, 𝜂, 𝜉) whose three components 
are the direction cosines of 𝑥-, 𝑦- and 𝑧-axes. Other functions are as follows:

• 𝑛(𝑟) is the outward normal unit vector field for a point ⃗𝑟 ∈ 𝜕𝐷;
• 𝜎𝑝1𝑡 (𝑟, 𝐸)(𝑝1 = 𝛾, 𝑒) is macroscopic total cross section;
• 𝜎𝑝1𝑝2𝑠 (𝑟, 𝐸′ → 𝐸, Ω̂ ⋅ Ω̂′)(𝑝1, 𝑝2 = 𝛾, 𝑒) is macroscopic differential scattering cross section;
• 𝑞𝑝1𝑝2 (𝑟, 𝐸, Ω̂)(𝑝1, 𝑝2 = 𝛾, 𝑒) is the scattering term between different particles;
• 𝑆(𝑟, 𝐸, Ω̂) is the external photon source term.

Since the two equations in Eq. (1) have very similar forms (𝑞𝛾𝑒 can be considered as the source term of electron transport), the same 
numerical methods will be used in two equations. For presentation convenience and symbol clarity, the superscript 𝛾, 𝑒 will be omitted 
in the subsequent section when there is no ambiguity, and all following 𝜓 can denote any one of 𝜓𝛾 and 𝜓𝑒, the same is true for the 
other variable, such as 𝜎𝑡.

We will not exactly solve Eq. (1) because at the right end of Eq. (1), there is an integral about Ω̂ over the unit sphere, which is 
difficult to solve directly. To overcome it, Legendre expansion is applied on integration about angular variable Ω̂ in Eq. (1), and the 
scattering term 𝑞(𝑟, 𝐸, Ω̂) becomes

𝑞(𝑟, 𝐸, Ω̂) =
∞
∑

𝑙=0
∫ 𝑑𝐸′𝜎𝑠𝑙(𝑟, 𝐸′ → 𝐸)

𝑙
∑

𝑚=−𝑙
𝑌 ∗
𝑙𝑚(Ω̂) × ∫ 𝑑Ω̂′𝑌𝑙𝑚(Ω̂′)𝜓(𝑟, 𝐸′, Ω̂′),

where 𝜎𝑠𝑙(𝑟, 𝐸′ → 𝐸) is Legendre coefficient, and 𝑌𝑙𝑚(Ω̂) is sphere harmonic function while 𝑌 ∗
𝑙𝑚(Ω̂) is its complex conjugation. Further, 

we set the real and imaginary parts of 𝑌𝑙𝑚(Ω̂) are 𝑌 𝑒𝑙𝑚(Ω̂) and 𝑌 𝑜𝑙𝑚(Ω̂) respectively, i.e.,
𝑌𝑙𝑚(Ω̂) = 𝑌 𝑒𝑙𝑚(Ω̂) + 𝑖𝑌

𝑜
𝑙𝑚(Ω̂),
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and the scalar moment is 
𝜙𝑘𝑙𝑚(𝑟, 𝐸) = ∫ 𝑑Ω̂′𝑌 𝑘𝑙𝑚(Ω̂

′)𝜓(𝑟, 𝐸, Ω̂′), 𝑘 ∈ {𝑒, 𝑜}. (2)

When considering the properties of 𝑌𝑙𝑚(Ω̂), Eq. (1) has format as follows:
Ω̂ ⋅ ∇𝜓(𝑟, 𝐸, Ω̂) + 𝜎𝑡(𝑟, 𝐸)𝜓(𝑟, 𝐸, Ω̂)

= 𝑆(𝑟, 𝐸, Ω̂) +
∞
∑

𝑙=0

𝑙
∑

𝑚=0
(2 − 𝛿𝑚0)∫ 𝑑𝐸′𝜎𝑠𝑙(𝑟, 𝐸′ → 𝐸)

∑

𝑘∈{𝑒,𝑜}
𝑌 𝑘𝑙𝑚(Ω̂)𝜙

𝑘
𝑙𝑚(𝑟, 𝐸

′). (3)

Notice that there is a summation from 0 to ∞ at the right end of Eq. (3), which is clearly unachievable, so numerical truncation 
is utilized and only the first 𝐿 terms that dominate the summation are considered.
3.  Numerical discretization

3.1.  Angular adaptive discretization

In the LBT equation, there is an integral operator about angles in the unit sphere. So in angular discretization, we need to find 
the angular discrete abscissas over the unit sphere and their corresponding weights. If we select a quadrature with 𝑁 points {Ω̂𝑛}𝑁𝑛=1
and corresponding weights {𝑤𝑛}𝑁𝑛=1, then scalar moments in Eq. (2) can be approximated by

𝜙𝑘𝑙𝑚(𝑟, 𝐸) ≈
𝑁
∑

𝑛=1
𝑤𝑛𝑌

𝑘
𝑙𝑚(Ω̂𝑛)𝜓(𝑟, 𝐸, Ω̂𝑛), 𝑘 ∈ {𝑒, 𝑜}.

3.1.1.  The classical 𝑆𝑁  method
The most usual angular discretization method is the 𝑆𝑁  method. It discretizes the entire sphere into completely symmetric 

𝑁(𝑁 + 2) discrete points and sets different weights to each point to ensure the accuracy of numerical integration on the sphere. 
For any incident angle, the 𝑆𝑁  method uses the same discretization angle quadrature. However, when the incident angle isn’t in the 
quadrature, 𝑆𝑁  method cannot approximate the integral of the source term well, which introduces an inevitable computational error 
in the subsequent calculation. The only thing 𝑆𝑁  method for reducing error is to increase 𝑁 in order to refine the angular quadrature. 
When 𝑁 increases, instead of refining directly based on the original quadrature, the 𝑆𝑁  method re-finds points on the entire unit 
sphere. Thus in some cases, increasing 𝑁 may not reduce the error introduced by angular discretization and might increase it. The 
degrees of freedom of the whole system increase by roughly 𝑁2 order, which is highly impractical.
3.1.2.  The adaptive Lobatto–Tschebyscheff method

We introduce a new adaptive angular discretization “Lobatto–Tschebyscheff” method (𝐿 − 𝑇  method) which selects 𝑛 different 𝜉
levels by Gauss–Lobatto quadrature and then selects different 𝜇 values by Tschebyscheff quadrature at each 𝜉 level. In the first octant, 
surface integration on the unit sphere is accomplished by 

𝐴 = 2
𝜋 ∫

1

0
𝑑𝜉 ∫

𝜋∕2

0
𝑑𝜔 (4)

with 𝜔 defined through 𝜂 =
√

1 − 𝜉2 sin𝜔 and 𝜇 =
√

1 − 𝜉2 cos𝜔. Then 

𝐴 = 2
𝜋 ∫

1

0
𝑑𝜉 ∫

√

1−𝜉2

0

𝑑𝜇
√

1 − 𝜇2 − 𝜉2
= 2
𝜋 ∫

1

0
𝑑𝜉 ∫

1

0

𝑑𝑦
√

1 − 𝑦
(5)

with 𝜇 =
√

1 − 𝜉2𝑦. This suggests that the 𝑦 integration be accomplished by the Tschebyscheff quadrature and the 𝜉 integration by 
the Legendre quadrature. In angle space, the incident direction is the most special one, the flux 𝜓𝛾 (𝑟, 𝐸, Ω̂) is larger near incident 
direction Ω̂0 = (𝜇0, 𝜂0, 𝜉0) than elsewhere. Thus in discretization, the incident angle should be selected first and more discretization 
angles should be selected near Ω̂0 while fewer angles elsewhere. The angular discretization is outlined in Algorithm 1.

Algorithm 1 has the following advantage compared with the classical 𝑆𝑁  scheme:
• For any incident angle, the discrete quadrature can include it as accurately as possible to make the error introduced by angular 
discretization smaller.

• The refinement of angular quadrature can be done directly based on the original quadrature to ensure that for any incident angle, 
the refinement allows error introduced by the angular discretization to be reduced.

• The quadrature refinement can be performed locally, rather than over the entire unit sphere as in 𝑆𝑁  method, to allow for 
less increase in degrees of freedom due to quadrature refinement while maintaining accuracy. Only at 𝜉0 level, higher order 
Tschebyscheff quadrature is used for less error in angular discretization and at other 𝜉 levels, low order Tschebyscheff quadrature 
is enough.

• As 𝑁 increases, the degrees of freedom of the whole system remain almost unchanged, which effectively remedies the shortcomings 
of the 𝑆𝑁  method.

• The new method does not require complete symmetry as 𝑆𝑁  method.
 Remark 3.1. In the following paper, the 𝐿 − 𝑇 (𝑁) method denotes the selection of 𝑁 points for angular discretization quadrature. 
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Algorithm 1: Lobatto–Tschebyscheff angular discretization method.
Input: incident direction (𝜇0, 𝜂0, 𝜉0);
Set 0 < 𝜉0 < 1; Divide [−1, 1] into [−1,−𝜉0], [−𝜉0, 𝜉0] and [𝜉0, 1];
for 𝑗 = 1, 2, 3 do

Utilize Gauss Lobatto quadrature on 𝑗th sub-interval above; Get 𝜉 abscissas {𝜉𝑖𝑗 }
𝑁𝑗
𝑖𝑗=1

 and corresponding weights {𝑤𝑖𝑗 }
𝑁𝑗
𝑖𝑗=1

;

Combine three sub-sequences {𝜉𝑖1}
𝑁1
𝑖1=1

, {𝜉𝑖2}
𝑁2
𝑖2=1

, {𝜉𝑖3}
𝑁3
𝑖3=1

 and weights {𝑤𝑖1}
𝑁1
𝑖1=1

, {𝑤𝑖2}
𝑁2
𝑖2=1

, {𝑤𝑖3}
𝑁3
𝑖3=1

;
Denote them as {𝜉𝑖}𝑁𝑖=1 and {𝑤𝑖}𝑁𝑖=1;
for 𝑖 = 1, 2,… , 𝑁 do

Find 𝜇 abscissas and point weights on 𝜉𝑖 level by Tschebyscheff quadrature:

𝜇𝑖𝑘 = cos
(

2𝑛𝑖 − 2𝑘 − 1
2𝑛𝑖

)

, 𝑝𝑖 =
𝑤𝑖
𝑛𝑖

;

Get 𝜂 abscissas by 𝜂 = ±
√

1 − 𝜉2 − 𝜇2;
Output: Angular discretization quadrature {(𝜇𝑖𝑘,±𝜂𝑖𝑘, 𝜉𝑖)}(𝑁,𝑛𝑖)(𝑖,𝑘)=1.

3.2.  Energy discretization

As for energy variables, the multi-group method is used for discretization. Firstly, two energy values 𝐸𝐺 = 0 and 𝐸0 which are big 
enough to ignore particles with higher energy are chosen respectively and then divide the energy spectrum into 𝐺 intervals. Finally, 
Eq. (3) in group 𝑔 for angle Ω̂𝑛 is

Ω̂𝑛 ⋅ ∇𝜓𝑔(𝑟, Ω̂𝑛) + 𝜎𝑔(𝑟)𝜓𝑔(𝑟, Ω̂𝑛)

= 𝑆𝑔(𝑟, Ω̂𝑛) +
∞
∑

𝑙=0

𝑙
∑

𝑚=0
(2 − 𝛿𝑚0)

𝐺
∑

𝑔′=1
𝜎𝑙𝑔𝑔′ (𝑟)

∑

𝑘∈{𝑒,𝑜}
𝑌 𝑘𝑙𝑚(Ω̂𝑛)𝜙

𝑘
𝑙𝑚𝑔′ (𝑟), 𝑔 = 1, 2,… , 𝐺, (6)

where

𝜓𝑔(𝑟, Ω̂) = 𝜓(𝑟, 𝐸, Ω̂)∕𝑓 (𝐸), 𝜎𝑔(𝑟) = ∫𝑔
𝑑𝐸𝜎𝑡(𝑟, 𝐸)𝑓 (𝐸), 𝑆𝑔(𝑟, Ω̂) = ∫𝑔

𝑑𝐸𝑆(𝑟, 𝐸, Ω̂),

𝜎𝑙𝑔𝑔′ (𝑟) = ∫𝑔
𝑑𝐸 ∫𝑔′

𝑑𝐸′𝜎𝑠𝑙(𝑟, 𝐸′ → 𝐸)𝑓 (𝐸′), 𝜙𝑘𝑙𝑚𝑔(𝑟) =
𝑁
∑

𝑛=1
𝑤𝑛𝑌

𝑘
𝑙𝑚(Ω̂𝑛)𝜓𝑔(𝑟, Ω̂𝑛), 𝑘 ∈ {𝑒, 𝑜},

and 𝑓 (𝐸) is a characterization function supported on group 𝑔 and is usually set to 1∕(𝐸𝑔−1 − 𝐸𝑔).

3.3.  Spatial adaptive discretization

3.3.1.  DG methods
The DG finite element method is used to solve multigroup discrete-ordinates linear Boltzmann transport equations on adaptive 

hexahedral elements.
In three dimension domain 𝐷, the LBT equation in group 𝑔 and angle Ω̂𝑛 = (𝜇𝑛, 𝜂𝑛, 𝜉𝑛) has format as follows: 

{
[

Ω̂𝑛 ⋅ ∇ + 𝜎𝑔(𝑥, 𝑦, 𝑧)
]

𝜓𝑔(𝑟, Ω̂𝑛) = 𝑞𝑔(𝑟, Ω̂𝑛), 𝑟 ∈ 𝐷,

𝜓𝑔(𝑟, Ω̂𝑛) = 0, on 𝜕𝐷− = {𝑟 ∶ 𝑛(𝑟) ⋅ Ω̂𝑛 < 0},
(7)

where

Ω̂𝑛 ⋅ ∇ = 𝜇𝑛
𝜕
𝜕𝑥

+ 𝜂𝑛
𝜕
𝜕𝑦

+ 𝜉𝑛
𝜕
𝜕𝑧
,

𝑞𝑔(𝑟, Ω̂𝑛) = 𝑆𝑔(𝑟, Ω̂𝑛) +
∞
∑

𝑙=0

𝑙
∑

𝑚=0
(2 − 𝛿𝑚0)

𝐺
∑

𝑔′=1
𝜎𝑙𝑔𝑔′ (𝑟)

∑

𝑘∈{𝑒,𝑜}
𝑌 𝑘𝑙𝑚(Ω̂𝑛)𝜙

𝑘
𝑙𝑚𝑔′ (𝑟).

For symbol simplicity, we will omit variable dependencies for functions in this subsection. Let ℎ is a partition of 𝐷, consisting of 
hexahedrons. The finite element space is

𝑉ℎ ≜ {𝑣 ∶ 𝑣 ∈ 𝐿2(𝐷), 𝑣|𝐾 ∈ 𝑘(𝐾),∀𝐾 ∈ ℎ},

where 𝑘 is 𝑘th order polynomial space in each direction. Then the DG approximation for Eq. (7) reads: find 𝜓𝑔 ∈ 𝑉ℎ such that 
∑

𝐾∈ℎ

[

∫𝜕𝐾
𝜓−
𝑔 𝑣

intΩ̂𝑛 ⋅ 𝑛𝑑𝜎 − ∫𝐾
𝜓𝑔Ω̂𝑛 ⋅ ∇𝑣 + ∫𝐾

𝜎𝑔𝜓𝑔𝑣
]

=
∑

𝐾∈ℎ
∫𝐾

𝑞𝑔𝑣. (8)
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The boundary numerical flux over each element face is defined as

𝜓−
𝑔 (𝑟, Ω̂𝑛) =

{

𝜓 inc
𝑔 (𝑟, Ω̂𝑛), 𝑛 ⋅ Ω̂𝑛 < 0,

𝜓𝑔(𝑟, Ω̂𝑛), 𝑛 ⋅ Ω̂𝑛 ⩾ 0,

where 𝑛 is the unit normal vector of element face and 𝜓 𝑖𝑛𝑐𝑔  represents incoming angular flux from the upstream element through the 
face 𝜕𝐾. 

 Remark 3.2. The basis functions for the DG method are typically chosen as 𝑘th order polynomials, which provide a numerical 
solution to the LBT equation with 𝑘 + 1 order accuracy relative to the mesh size ℎ. However, due to the high degrees of freedom 
in the overall system, only linear polynomials are used as basis functions in the examples presented in this paper.

 Remark 3.3. Due to the assumption of discontinuity in the approximate solution, the DG method requires less mesh regularity 
and can be refined or coarsened without continuity constraints. Additionally, different elements of the mesh can be approximated 
using varying forms of polynomial approximations with different orders. This flexibility facilitates the creation of adaptive meshes. 

3.3.2.  Adaptive spatial mesh
In this paper, we utilize an adaptive hexahedral mesh to partition the computational domain. In practical applications, the compu-

tational domain can become complex, with each voxel potentially surrounded by others containing different materials. To accurately 
calculate the dose distribution for each voxel in phase space, it is essential to use a relatively small spatial mesh size (e.g., 2mm ×
2mm × 2mm). However, employing a uniform 2mm × 2mm × 2mm voxel size across the entire region would result in over 3 mil-
lion spatial degrees of freedom for a simulation area of 30 cm × 30 cm × 30 cm, making calculations nearly infeasible. Additionally, 
using such a dense mesh in regions where material properties remain constant or energy levels are low would waste computational 
resources.

To address these challenges in simulations of complex models, we implement an adaptive mesh technique. This approach dy-
namically adjusts the mesh size based on material distribution and the characteristics of the physical field, effectively reducing 
the computational burden while maintaining accuracy. In spatial discretization, areas where the flux 𝜓(𝑟, 𝐸, Ω̂) exhibits significant 
changes are particularly important to note. In radiotherapy, these areas correspond to the boundary of the incident beam and the 
interfaces between different materials. To capture these variations effectively, a coarser rectangular mesh will be used to divide the 
computational domain, and the material of each element will be identified based on its Hounsfield unit (HU) value. For each element, 
we will compare its material with those of its neighbors in the 𝑥, 𝑦, and 𝑧 directions. If any differences are detected, the element will 
be refined in the corresponding direction. Special attention must also be given to the position of the incident beam. At the boundary 
of the incident beam field, dose distribution can vary significantly on either side due to the large intensity gradient of the beam. 
Consequently, it is essential to refine the voxels on both sides of the incident beam edge. Finally, the materials of all elements will 
be re-evaluated after refinement to ensure accuracy. The process for constructing the adaptive mesh is summarized in Algorithm 2. 

3.4.  Source iteration

Due to the large degrees of freedom in the discrete LBT equation, it cannot be solved directly. Instead, approximate solutions are 
typically obtained using iterative methods, with the source iteration method being one of the most commonly used approaches. Since 
particles will never scatter to higher energy from low energy, Eq. (6) can be rewritten as

Ω̂𝑛 ⋅ ∇𝜓𝑔(𝑟, Ω̂𝑛) + 𝜎𝑔(𝑟)𝜓𝑔(𝑟, Ω̂𝑛)

= 𝑠𝑔(𝑟, Ω̂𝑛) +
∞
∑

𝑙=0

𝑙
∑

𝑚=0
(2 − 𝛿𝑚0)𝜎𝑙𝑔𝑔(𝑟)

∑

𝑘∈{𝑒,𝑜}
𝑌 𝑘𝑙𝑚(Ω̂𝑛)𝜙

𝑘
𝑙𝑚𝑔(𝑟), 𝑔 = 1, 2,… , 𝐺, (9)

where

𝑠𝑔(𝑟, Ω̂𝑛) =
∑

𝑔′<𝑔

∞
∑

𝑙=0

𝑙
∑

𝑚=0
(2 − 𝛿𝑚0)𝜎𝑙𝑔𝑔′ (𝑟)

∑

𝑘∈{𝑒,𝑜}
𝑌 𝑘𝑙𝑚(Ω̂𝑛)𝜙

𝑘
𝑙𝑚𝑔′ (𝑟) + 𝑆𝑔(𝑟, Ω̂𝑛).

Then for energy group 𝑔 and angle Ω̂𝑛, initial value is set to 𝜓0
𝑔 = 0 and 𝑖th iteration 𝜓 𝑖𝑔 is implemented as follows:

[

Ω̂𝑛 ⋅ ∇ + 𝜎𝑔(𝑟)
]

𝜓 𝑖𝑔(𝑟, Ω̂𝑛) =
∞
∑

𝑙=0

𝑙
∑

𝑚=0
(2 − 𝛿𝑚0)𝜎𝑙𝑔𝑔(𝑟)

∑

𝑘∈{𝑒,𝑜}
𝑌 𝑘𝑙𝑚(Ω̂𝑛)𝜙

𝑘,𝑖−1
𝑙𝑚𝑔 (𝑟) + 𝑠𝑔(𝑟, Ω̂𝑛),

𝑔 = 1, 2,… , 𝐺, 𝑖 = 1, 2,… , 𝑙 + 1,

where

𝜙𝑘,𝑖𝑙𝑚𝑔(𝑟) =
𝑁
∑

𝑛=1
𝑤𝑛𝑌

𝑘
𝑙𝑚(Ω̂𝑛)𝜓

𝑖
𝑔(𝑟, Ω̂𝑛), 𝑘 ∈ {𝑒, 𝑜}.
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Algorithm 2: Adaptive spatial discretization method.
Input: ¬ CT image of computation domain,

 ­ Incident beam intensity 𝜓 𝑖𝑛(𝑟, 𝐸, Ω̂),
 ® Conversion table T from Hounsfield units to material properties;

Step 1: Initialize mesh
Divide computation domain into uniform hexahedral mesh coarse;
Define null material matrix M ∈ ℝ𝑁𝑥×𝑁𝑦×𝑁𝑧 , where 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 is the number of elements via 𝑥-, 𝑦-, 𝑧- direction in coarse.
foreach K in coarse do

Calculate average Hounsfield unit value of K;
Get material property of K from Table T and write it to M.

Step 2: Heterogeneous adaptive refinement
foreach K in coarse do

for d in {𝑥, 𝑦, 𝑧} do
if M(K) ≠ M(neighboring voxels ofK in d − direction) then

Split K into several smaller voxels along d-direction.

Denote mesh coarse after heterogeneous adaptive refinement as Heterogeneous.
Step 3: High gradient adaptive refinement
Calculate partial derivatives of 𝜓 𝑖𝑛 everywhere on computation domain;
Denote average value of 𝜕𝑥𝜓 𝑖𝑛, 𝜕𝑦𝜓 𝑖𝑛 and 𝜕𝑧𝜓 𝑖𝑛 over all computation domain as 𝑚𝑥, 𝑚𝑦 and 𝑚𝑧, respectively.
foreach K in Heterogeneous do

for d in {𝑥, 𝑦, 𝑧} do
if 𝜕d𝜓 𝑖𝑛|𝐾 > 𝑚d then

Split K into several smaller voxels along d-direction.

Denote mesh Heterogeneous after heterogeneous adaptive refinement as ref ine.
Step 4: Material redefinition
Redefine null material matrix M with the same size as ref ine.
foreach K in ref ine do

Calculate average Hounsfield unit value of K;
Get material property of K from Table T and write it to M.

Output: Adaptive mesh ref ine and material matrix M.

4.  Numerical results

In this section, we present various experimental results. The cross sections needed in this Section are all generated by the coupled 
electron-photon cross section generating code (CEPXS) [15]. The reference solutions in all test cases are simulated by MC method 
with 1 × 1 × 1mm3 voxels. To highlight the advantages of our algorithm over the MC algorithm across multiple dimensions, we 
recalculated the dose distribution using the MC algorithm on the same grid as the linear Boltzmann transport (LBT) model in both 
scenarios. First, a numerical model is employed to validate the accuracy and convergence order. Next, we demonstrate the efficiency 
of material redefinition in spatial adaptive discretization. Finally, we compare our algorithm against the MC method with the same 
mesh for different application models.

4.1.  Convergence test

First, we use a numerical model to verify the convergence order in spatial discretization. In this model, we consider a one-
group problem, setting both the total cross-section and the scattering cross-section to isotropic for simplicity. The details of the model 
parameters are presented Table 1. In 𝐿 − 𝑇 (50), 5th order Lobatto quadrature is selected as 𝜉 level, and 4,6,7,6,4th order Tschebyshev 
quadrature is selected for each 𝜉 level.
To verify the convergence of the code, we choose angular flux 𝜓 with exact solution

𝜓(𝑟, 𝐸, Ω̂) = sin(𝑥 + 𝑦 + 𝑧).

The slices of the exact solution 𝜓 are as in Fig. 1. The boundary condition is
𝜓|𝜕𝐷− = sin(𝑥 + 𝑦 + 𝑧),  on 𝑛 ⋅ Ω̂ < 0

and the corresponding extra source is
𝑆(𝑟, 𝐸, Ω̂) = (𝜇 + 𝜂 + 𝜉) cos(𝑥 + 𝑦 + 𝑧) + sin(𝑥 + 𝑦 + 𝑧).
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Table 1 
Details in numerical model.

 Parameters  Values
 Computation domain [−1, 1] × [−1, 1] × [−1, 1]
 Angular discrete quadrature 𝐿 − 𝑇 (50)
 Legendre expansion number 𝐿 = 5
 Total cross section 𝜎𝑡(𝑟, 𝐸) = 2
 Scattering cross section 𝜎𝑠(𝑟, 𝐸′ → 𝐸, Ω̂ ⋅ Ω̂′) = 1

Fig. 1. Comparison between exact and numerical soultion at 𝑧 = 0.

Table 2 
𝐿2 error and 𝐿∞ error on different spatial size.
    N 𝐿2 error  Order 𝐿∞ error  Order  
  10  9.9925E−03  –  5.3974E−03  –  
  20  2.4475E−03  2.0295  1.3288E−03  2.0222 
  40  6.0489E−03  2.0166  3.2796E−04  2.0185 
  80  1.5096E−04  2.0025  8.1294E−05  2.0123 

The numerical solution slices at 𝑧 = 0 under spatial discrete size ℎ = 0.025 are shown in Fig. 1 and the corresponding 𝐿2 error and 
𝐿∞ error at different spatial discrete sizes are shown in Table 2. From Table 2, we observe that the 𝐿2 and 𝐿∞ error both decrease 
with second-order accuracy as the spatial size becomes smaller. This result is consistent with the theoretical expectations, indicating 
that the code can be applied effectively in real-world scenarios.

4.2.  Material redefinition in spatial adaptive mesh

In spatial discretization, adaptive mesh technology is employed to enhance precision and efficiency. In the fourth step of the adap-
tation process outlined in Algorithm 2, we redefine the material properties of the voxels within the spatial mesh. Before proceeding 
with this step, it is crucial to establish the importance of material redefinition in spatial adaptive discretization. To demonstrate this, 
we compare material representations at different depths, emphasizing the distinctions between using material redefinition and not 
using it. As illustrated in Figs. 2 and 3, there is a significant improvement in resolution, particularly at the boundaries, when material 
redefinition is applied. This clearly highlights the effectiveness of the material redefinition process.

4.3.  Water models

In this paper, we consider two water models, as illustrated in Fig. 4. Specifically, the models involve a beam of photons with varying 
energies directed perpendicularly into a water tank. Different beam sizes correspond to different incident fields. To approximate this 
incident condition, we employ the following extra source term: 

𝑆(𝑟, 𝐸, Ω̂) = 109𝛿
(

𝑟 − 𝑟𝑖𝑛𝑐
)

𝑓 (𝐸)𝛿(Ω̂ − [0, 0, 1]), (10)

where 𝑟 is located in the calculation domain 𝐷, 𝑟𝑖𝑛𝑐 = [−3, 3] × [−3, 3] × 0 cm3 represents the incident field, and 𝑓 (𝐸) is the energy 
function that characterizes the energy of the incident beam. The energy function 𝑓 (𝐸) for water models which illustrated in Fig. 5 
are chosen as

• Water model 1: 𝑓 (𝐸) = 𝛿(𝐸 − 9.4842);
• Water model 2: 𝑓 (𝐸) = 𝐸.
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Fig. 2. Comparison on material image without material redefinition.

Table 3 
Details in numerical model.
    Parameters  Values  
  Computation domain [−10, 10] × [−10, 10] × [0, 40] cm3 
  Field size [−3, 3] × [3, 3]cm2  
  Number of hexahedral elements  41,400  
  Minimum element size 2 × 2 × 2 mm3  
  Maximum element size 1 × 1 × 1 cm3  
  Angular discrete quadrature 𝐿 − 𝑇 (200)  
  Legendre expansion number 𝐿 = 5  

4.3.1.  Details in models
The identical parameters in slab models are listed in Table 3. In 𝐿 − 𝑇 (200), 10th order Lobatto quadrature is selected as 𝜉 level, 

and 19,17,15,13,11,9,7,5,3,1th order Tschebyscheff quadrature is selected for each 𝜉 level. For water model 2, the energy function 
is continuous, thus 21 photon and 20 electron energy groups are utilized, and both the photon and electron energy groups ranged 
from 0.001 Mega electron Volt (MeV) to 9.4842MeV with group widths ranging from 0.00075MeV at lower energies to 2.8442MeV 
at higher energies. For water model 1, there is an extreme shock at the highest energy, so an extra group is used here for accuracy.

4.3.2.  Comparison
To compare our results with the MC simulations, we employed several metrics, including depth versus percentage dose distribution 

(PDD) curves at the isocenter (which is calculated by averaging the dose distribution near the geometric center of the computation 
domain) and CT image comparisons between the two methods. The accuracy of the results is ultimately assessed using the gamma 
index under various formulations, a widely adopted method in clinical practice.
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Fig. 3. Comparison on material image with material redefinition.

Fig. 4. Model graph(red: incident photon beam; blue: water tank). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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Fig. 5. Energy functions.

Fig. 6. Percentage dose distribution for two water models.

Fig. 6 presents the percentage dose distribution curve for MC compared to our algorithm in the external beam benchmark for 
two water models. Figs. 7 and 8 show the CT image comparisons of the two models at 151mm. We observe a strong agreement 
between our results and MC references. The oscillations can be seen in the MC method, as shown in Figs. 7 and 8. In Fig. 6, the dose 
distribution results are presented as averages, offering a general overview of data trends. In contrast, Figs. 7 and 8 display the results 
pointwise, emphasizing values at specific locations rather than averaging them. Although averaging calculations can slightly reduce 
these oscillations, as demonstrated in Fig. 6, our algorithm effectively avoids this issue entirely. 

To further evaluate how accurate the two results are, gamma indices under 2% 2mm Distance to agreement (DTA) and 2% 3mm 
DTA formulations are calculated. When calculating the gamma index, only voxels whose dose is higher than 10% maximum dose in 
the calculation domain are considered. The detailed gamma indices and degrees of freedom (DoF) and computational time (Time) 
are shown in Table 4. From Figs. 6, 8 and Table 4, our method demonstrates significant efficiency in dose simulation, requiring fewer 
DoF and shorter computational time while delivering greater accuracy than the MC method. Additionally, the MC method displays 
oscillatory behavior at the tail of the dose distribution, a phenomenon that is not present in our approach. To better illustrate the 
efficiency of our algorithm, we also include the non-adaptive method in the comparison, which utilizes 5 × 5 × 5mm3 hexahedral 
elements and 𝐿-𝑇 (288) quadrature for spatial and angular discretization. In comparison, the non-adaptive method requires approx-
imately four times the degrees of freedom (DoF) and computational time to achieve results equivalent to those obtained with our 
algorithm for these two water models.

4.4.  Slab models

To further test our algorithm, we compute two slab models to assess its ability to calculate dose in anisotropic materials. Each 
slab model consists of a spatial domain that includes three different materials.
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Table 4 
Comparison between LBT and MC for two water models.
    Model  Method  DoF  Time(s)  DTA  Gamma index (%) 
 

Model 1

Adaptive LBT 3.5604E+8 3.2264E+3
 3mm  98.9100  

  2mm  96.2721  
 

Non-adaptive LBT 1.5852E+9 1.4222E+4
 3mm  98.9074  

  2mm  96.5616  
 

MC 1.0000E+9 1.2469E+4
 3mm  83.6903  

  2mm  72.6360  
 

Model 2

Adaptive LBT 3.3948E+8 7.5722E+3
 3mm  98.4866  

  2mm  94.8950  
 

Non-adaptive LBT 1.5114E+9 1.4768E+4
 3mm  98.3967  

  2mm  95.0076  
 

MC 1.0000E+9 1.6734E+4
 3mm  72.7637  

  2mm  65.4131  

Fig. 7. CT image for water model 1 at 151mm.

4.4.1.  Details in models
The calculation parameters in slab models are listed in Table 5. In 𝐿 − 𝑇 (200), 10th order Lobatto quadrature is selected as 𝜉 level, 

and 19,17,15,13,11,9,7,5,3,1th order Tschebyscheff quadrature is selected for each 𝜉 level. The incident energy for two different 
cases in slab models is the following

• Slab model 1: 𝑓 (𝐸) = 𝛿(𝐸 − 9.4842);
• Slab model 2: 𝑓 (𝐸) = 𝐸.

The same energy group structure is chosen as in the corresponding water models. Regarding spatial discretization, each slab contains 
three different materials, and the cross sections 𝜎𝑡 and 𝜎𝑠 vary with the materials. As a result, the dose distribution will exhibit 
significant changes at the slab boundaries. To address this, adaptive refinement is used near the slab interfaces. Additionally, the 
dose distribution also varies sharply at the boundaries of the incident field, necessitating mesh refinement on both sides of the field 
boundaries.

4.4.2.  Comparison
As two water models, the incident photon beam is monoenergetic in slab model 1, while it is multi-energetic in slab model 2. Both 

beams are directed perpendicularly into the slab domain for two slab models. Figs. 9 and 10 are incident energy spectrum and PDD 
curves of the MC method versus our method for the external beam benchmark for two slab models. The corresponding CT images at 
151mm are shown in Figs. 11 and 12, respectively. Gamma indices under difference formulations are shown in Table 6. For these 
two models, the relative residual errors between the two results at the isocenter are as in Fig. 13.
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Fig. 8. CT image for water model 2 at 151mm.

Table 5 
Parameters in slab models.
    Parameters  Values  
  Computation domain [−10, 10] × [−10, 10] × [0, 40] cm3 
  Field size [−3, 3] × [−3, 3] cm2  
 
Slab material

0 ∼ 6 cm Water  
 6 ∼ 10 cm Bone  
 10 ∼ 24 cm Lung  
 24 ∼ 40 cm Water  
  Number of hexahedral elements  64,800  
  Minimum element size 2 × 2 × 2 mm3  
  Maximum element size 1 × 1 × 1 cm3  
  Angular discrete  quadrature 𝐿 − 𝑇 (200)  
  Legendre expansion number 𝐿 = 5  

Table 6 
Comparison between LBT and MC for two slab models.
    Model  Method  DoF  Time (s)  DTA  Gamma index (%) 
 

Model 1

Adaptive LBT 1.1449E+9 4.8955E+3
 3mm  94.0646  

  2mm  92.3638  
 

Non-adaptive LBT 1.2681E+10 5.2726E+4
 3mm  94.6034  

  2mm  92.8651  
 

MC 1.0000E+10 1.2968E+4
 3mm  77.9159  

  2mm  70.4278  
 

Model 2

Adaptive LBT 1.0916E+9 6.8024E+3
 3mm  95.4825  

  2mm  92.8794  
 

Non-adaptive LBT 1.20914E+10 6.9003E+4
 3mm  96.0661  

  2mm  92.6762  
 

MC 1.0000E+10 1.7453E+4
 3mm  64.1107  

  2mm  58.1860  

From Figs. 9 to 13 and Table 6, our method demonstrates high efficiency in dose simulation, exhibiting lower DoF, shorter 
computational time and superior accuracy compared to the MC method. Although the oscillation in the MC results appeared to 
decrease by 10 times particle simulation, it nevertheless persisted. For the non-adaptive method, 2.5 × 2.5 × 2.5mm3 hexahedral 
elements and 𝐿-𝑇 (288) quadrature are employed for spatial and angular discretization. This method requires approximately ten times 
the DoF and computational time to achieve results equivalent to those obtained with our algorithm for these two slab models.
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Fig. 9. Energy spectrum and percentage dose distribution in slab model 1.

Fig. 10. Energy spectrum and percentage dose distribution in slab model 2.

Table 7 
Parameters in patient models.
    Parameters  Values  
  Computation domain [−30, 27.5] × [−24.18, 33.32] × [12, 37] cm3 
  Field size [−2.5, 2.5] × [−1.68, 3.32] cm2  
  Number of hexahedral elements  87,394  
  Minimum element size 2 × 2 × 2 mm3  
  Maximum element size 2 × 2 × 2 cm3  
  Angular discrete quadrature 𝐿 − 𝑇 (310)  
  Legendre expansion number 𝐿 = 5  

4.5.  Patient model

Finally, we simulate a model based on a patient’s data from a lung CT image. In this example, the material composition within 
the computational domain becomes considerably more intricate than that observed in the water and slab models presented above. 
This allows us to test the efficiency of our algorithm in real-world applications.

4.5.1.  Details in models
The calculation parameters in patient models are listed in Table 7.  In 𝐿 − 𝑇 (310), 12th order Lobatto quadrature is selected as 

𝜉 level, and 24,22,20,18,16,14,12,10,8,6,4,1th order Tschebyscheff quadrature is selected for each 𝜉 level. The incident energy in 
patient model is the following

• Patient model: 𝑓 (𝐸) = 𝐸.
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Fig. 11. CT image for slab model 1 at 151mm.

Fig. 12. CT image for slab model 2 at 151mm.

The same energy group structure is chosen as in the corresponding water and slab models. For each voxel, the average Hounsfield 
units is calculated before assigning a material to that voxel. Based on this average Hounsfield units, the voxel material is classified as 
air, lung, soft tissue, or bone. The conversion in Table 8 from Hounsfield units to material is determined through visual examination 
of the CT image. The adaptive mesh image slices are shown in Fig. 14.

4.5.2.  Comparison
The patient model represents a spectrum model, with an incident photon beam that is multi-energetic and directed perpendicularly 

into the patient domain. Fig. 15 displays the incident energy spectrum alongside a PDD curve, comparing the MC method with our 
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Fig. 13. Relative Residual Errors between two results for slab model 1 and slab model 2.

Fig. 14. Adaptive mesh image at different depths (white: air, red: lung, green: soft tissue, blue: bone). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

Table 8 
Conversion from Hounsfield units to material for the an-
thropomorphic phantom.
 Hounsfield units range  Material  Density (g cm−3)

 Less than −853  Air 1.2048 × 10−3

 From −853 to −154  Lung  1.04
 From −153 to 101  Soft tissue  1
 Greater than 101  Bone  1.85

algorithm for the external beam benchmark in the patient model. The CT images at 145mm are shown in Figs. 16 and 17 from two 
different perspectives. Simultaneously, we also calculate the gamma index under different formulations in Table 9. From Figs. 15 to 17 
and Table 9, our method still has significant advantages over the MC method. The DoF of the MC method is up to 1010 while it’s only 
about 109 for our algorithm and our algorithm uses only 2/3 of the computational time compared to the MC method. Additionally, 
we observe a significant increase in each gamma index, indicating that adaptive mesh refinement in Algorithm 2 is an effective tool 
for enhancing the alignment between our method and the MC results. As for the non-adaptive method, 2 × 2 × 2 mm3 hexahedral 
elements and 𝐿 − 𝑇 (440) quadrature are used in spatial and angular discretization and it needs too much DoF and computational time 
to get equivalent level results as our algorithm for this patient model.
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Fig. 15. Energy distribution and result comparison in patient model.

Fig. 16. CT image for patient model at 145mm.

Table 9 
Comparison between our result and MC for patient model.
    Material Handling  Method  DoF  Time (s)  DTA  Gamma index (%) 
 
With material
redefinition

Adaptive LBT 4.4431E+9 1.0034E+5
 3mm  99.8780  

  2mm  97.7638  
 

MC 1.0000E+10 1.4569E+5
 3mm  85.5976  

  2mm  73.8589  
 
Without material
redefinition

Adaptive LBT 4.4431E+9 1.0263E+5
 3mm  99.3427  

  2mm  91.7397  
 

Non-adaptive LBT >1E+11 >1E+6
 3mm ∖  

  2mm ∖  
 

MC 1.0000E+10 1.4378E+5
 3mm  69.3563  

  2mm  55.5732  
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Fig. 17. CT image for patient model at 145mm.

5.  Conclusion and outlook

In this paper, an angle and space adaptive method for the photon-electron coupled Boltzmann transport equations is proposed to 
solve the dose distribution in radiotherapy. The numerical scheme combines the multigroup method, 𝐿 − 𝑇  method and DG method 
for energy, angular and space discretization. The overall efficiency of this algorithm is determined using one numerical, two water 
and two slab models. Finally, it is placed on a patient model and again performs well. In comparison to the MC method, our algorithm 
has lower DoF, shorter computational time and higher accuracy. Our algorithm achieves excellent agreement with the benchmark 
from the MC method, with the gamma index reaching at least 92% and 95% at 2%/2mm DTA criteria and 2%/3mm DTA criteria, 
respectively, for all test models.

In future studies, we will try to apply our algorithms to a wider range of clinically relevant cases, especially cases where the 
presence of some local heterogeneity, small fields, sharp edges, and high density gradients can make computation difficult. And we 
will also try to build on this work to propose some acceleration techniques that can be applied to a wider range of clinical models to 
really speed up dose calculation in clinical applications.
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