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Abstract
In this paper, we study two residual-based a posteriori error estimators for the C0 interior
penalty method in solving the biharmonic equation in a polygonal domain under a con-
centrated load. The first estimator is derived directly from the model equation without any
post-processing technique. We rigorously prove the efficiency and reliability of the estimator
by constructing bubble functions. Additionally, we extend this type of estimator to general
fourth-order elliptic equations with various boundary conditions. The second estimator is
based on projecting the Dirac delta function onto the discrete finite element space, allowing
the application of a standard estimator. Notably, we additionally incorporate the projection
error into the standard estimator. The efficiency and reliability of the estimator are also ver-
ified through rigorous analysis. We validate the performance of these a posteriori estimates
within an adaptive algorithm and demonstrate their robustness and expected accuracy through
extensive numerical examples.
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1 Introduction

In this paper, we are interested in an adaptive C0 interior penalty method for the biharmonic
problem in polygonal domain � ⊂ R

2 with a concentrated load [12, 40]

�2u = δx0 in �, u = 0 and ∂nu = 0 on ∂�. (1.1)

The boundary conditions are known as homogeneous Dirichlet boundary conditions or
clamped boundary conditions [28], where ∂nu denotes the outward normal derivative of
u on ∂�. δx0 is a Dirac delta function concentrated at a point x0 ∈ �0 ⊂ � satisfying

〈δx0 , v〉 = v(x0), ∀ v ∈ C(�0).

Elliptic problems with Dirac delta source terms are encountered in various applications,
such as the electric field generated by a point charge, transport equations for effluent dis-
charge in aquatic media, modeling of acoustic monopoles [2, 21, 26, 30]. The biharmonic
problem can be used to study the small deflections of a thin plate, especially the biharmonic
problem (1.1) with the Dirac delta source term describes the deflections for thin plates with
a concentrated load [12, 40].

TheDiracmeasure in (1.1) does not belong to H−1(�), resulting in the solution exhibiting
low regularity. Analytical solutions for biharmonic problem (1.1) are typically challenging,
though they exist for some special cases of geometry and loads. For example, analytical meth-
ods for the biharmonic problem (1.1) have primarily focused on circular and annular domains
(see, e.g., [12, 15, 40]). Consequently, numerical methods have garnered widespread atten-
tion for solving (1.1), such as the boundary element method [12], the regular hybrid boundary
node method [41]. Discussion on various numerical methods for biharmonic problem (1.1)
can be found in [41] and the references therein. Among various numerical methods, the finite
element method is the most popular.

Finite element methods developed for the general biharmonic equation with Dirichlet
boundary conditions can typically be applied to solve the specific biharmonic problem (1.1).
The conforming finite element method is one approach, where the presence of high-order
derivatives necessitates finite element spaces that belong to H2, such as the C1 Argyris finite
element method [3]. Additionally, the general biharmonic problem can be decomposed into
Poisson and Stokes equations, which are then solved using the C0 finite element method
[31]. However, whether this decomposition strategy is effective for problem (1.1) remains
to be explored since such decomposition requires the source term in H−1(�) or its subset.
Another option that utilizes the C0 finite element space, yet can still accommodate singular
source terms not in H−1(�), is the C0 interior penalty method [19]. Its stability is ensured
by penalty terms enforced across the mesh cell interfaces.

For the biharmonic problem (1.1), some finite element methods and error analyses are
available in the literature. A C1 finite element approximation was proposed in [36], and
optimal error estimateswere studied on quasi-uniformmeshes, inwhich the H2 error estimate
is of order h when using polynomials of degree greater than 2. More recently, a C0 interior

penalty method was studied in [29], and a local H2 error estimate of order | ln h| 32 was
given on quasi-uniform meshes. Due to the low regularity of the solution, the convergence
rates on quasi-uniform meshes are inherently limited. To improve the convergence rate in the
finite element approximation, adopting an adaptive finite elementmethod becomes necessary.
Thus, the primary objective of this paper is to develop an adaptiveC0 interior penalty method
for the biharmonic problem (1.1).
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Many adaptive finite elementmethods are available for second order elliptic equationswith
Dirac delta source term. Tough δx0 is not in H−1(�) and u /∈ H1(�), the C0 finite element
method can still approximate the equations. However, direct application of the residual-based
a posteriori error estimator using standard energy norms is not viable. In the literature, two
typical strategies have been studied to address this issue. One approach is to utilize norms
weaker than H1(�) for error estimation. For instance, Araya et al. [1] derived a posteriori
error estimators in L p(1 < p < ∞) norm and W 1,p(p0 < p < 2, p0 ∈ [1, 2)) seminorms
for a Poisson problem with a Dirac delta source term on two-dimensional domains. Gaspoz
et al. [23] provided a posteriori error estimates in H1−s, s ∈ (0, 1

2 ) norm. Additionally, a
global upper bound and a local lower bound of residual type a posteriori error estimators in a
weighted Sobolev norm ‖ · ‖H1

α
with α ∈ ( d2 − 1, d

2 ) (d is the spatial dimension) for elliptic
problems were obtained by Agmon et al. in [4]. Another is to regularize the source term to an
L2(�) function by projecting it onto a polynomial space, potentially introducing a projection
error. This regularization allows the application of standard residual-based a posteriori error
estimators for general Poisson problems. For further insights, readers are referred to early
review articles, such as [25, 33].

Results on a posteriori error estimates of the C0 interior penalty method for biharmonic
problems with L2(�) source terms can be found in [24]. However, no result is available for
the fourth order elliptic equation with the Dirac delta source term, which does not belong
to H−1(�), not to mention in L2(�). Therefore, to improve the accuracy of the numerical
solution while optimizing the distribution of computational resources, we propose two types
of residual-based a posteriori error estimators for the biharmonic problem (1.1) to guidemesh
adaptive refinement around singular points.

The first type of a posterior error estimator is derived based on the primal equation (1.1).
Depending on the location of x0 in the computational element, this error estimator can take
different forms. Specifically, if x0 is not a vertex, an additional term that depends on the
size of the element will be required. We rigorously prove the upper and lower bounds of the
proposed estimator to ensure its reliability and efficiency. Moreover, we extend this residual-
type a posteriori error estimator to fourth-order elliptic equations with various boundary
conditions.

The second type of a posterior error estimator is proposed based on the projection tech-
niques. We first project δx0 onto δh in the finite element space, and then use this projection
δh to construct a residual-type a posteriori error estimator. This method introduces an addi-
tional error between δh and δx0 , which is shown to be of the same order as the finite element
approximation. Therefore, it does not compromise the accuracy of the numerical solution.
This is further supported by our error analysis and numerical experimental results.

The rest of the paper is organized as follows. In Section 2, we establish the well-posedness
and discrete problem of (1.1) by the C0 interior penalty method. The main results are
presented in Section 3, where we propose two types of residual-based a posteriori error
estimators, upper and lower bounds are proved in order to guarantee the reliability and the
efficiency of the proposed estimators. In Section 4, we extend our results to a broader class of
fourth-order elliptic equations with various boundary conditions. Section 5 provides numer-
ous numerical examples to illustrate the robustness of our estimators and the corresponding
adaptive C0 interior penalty method. Finally, we draw some conclusions in Section 6.

Throughout the paper, the generic constant C > 0 in our estimates may differ at different
occurrences. It will depend on the computational domain, but not on the functions involved
or on the mesh level in the finite element algorithms.
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2 Preliminaries and C0 Interior Penalty Method

Denote by Hm(�), m is a non-negative integer, the Sobolev space that consists of functions
whose i th (0 ≤ i ≤ m) derivatives are square integrable. Let L2(�) := H0(�). Denote by
H1
0 (�) ⊂ H1(�) the subspace consisting of functions with zero trace on the boundary ∂�.

For s > 0, let s = m + t , where m ∈ Z≥0 and 0 < t < 1. For a subset D ⊂ R
d with d ≥ 1,

the fractional order Sobolev space Hs(D) consists of distributions v in D satisfying

‖v‖2Hs (D) := ‖v‖2Hm (D) +
∑

|ν|=m

∫

D

∫

D

|∂νv(x) − ∂νv(y)|2
|x − y|d+2t dxdy < ∞,

where ν = (ν1, · · · , νd) ∈ Z
d≥0 is a multi-index such that ∂ν = ∂

ν1
x1 · · · ∂νd

xd and |ν| =
∑d

i=1 νi .

2.1 Well-Posedness and Regularity

We first show the well-posedness of the problem (1.1).

Lemma 2.1 For any ε > 0, it follows that the point Dirac delta function δx0 ∈ H−1−ε(�)

and satisfies
‖δx0‖H−1−ε (�) ≤ C .

Proof For any v ∈ H1+ε
0 (�) with ε ∈ (0, 1), the embedding theorem [13] implies that

v ∈ C0,ε(�) ⊂ C0(�). Then,

|〈δx0 , v〉| = |v(x0)| ≤ ‖v‖L∞(�) ≤ C‖v‖H1+ε (�),

and it follows

‖δx0‖H−1−ε (�) := sup
v∈H1+ε

0 (�)\{0}

|〈δx0 , v〉|
‖v‖H1+ε (�)

≤ C .

For ε ≥ 1, it holds that v ∈ H1+ε
0 (�) ⊂ H2(�) ↪→ C0(�), so the same estimate remains

valid. �

Remark 2.2 For parameter ε mentioned in Lemma 2.1, we primarily consider ε ∈ (0, 1] in
the following analysis, with particular emphasis on values of ε that are sufficiently close to
0.

The variational formulation for problem (1.1) is to find u ∈ H2
0 (�), such that

a(u, v) :=
∫

�

�u�v dx = 〈δx0 , v
〉
, ∀ v ∈ H2

0 (�). (2.1)

The Sobolev imbedding theorem [32] implies v ∈ C(�) for v ∈ H2
0 (�), thus the variational

formulation (2.1) is well-posed.
We sketch a drawing of the domain � with a singular point x0 in Figure 1. We assume the

largest interior angle ω ∈ [π
3 , 2π) of the domain associated with the vertex Q. For simplicity

of the analysis, we assume that

sin

√
ω2

sin2 ω
− 1 �=

√

1 − sin2 ω

ω2 . (2.2)
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Fig. 1 Domain � with interior
angle ω contains a singular point
x0

Fig. 2 α0 in terms of the largest interior angle ω

Let z�, � = 1, 2, . . . satisfying Re(z�) > 0 be the solutions of the following characteristic
equation

sin2(zω) = z2 sin2(ω). (2.3)

Then there exists a threshold

α0 := min{Re(z�), � = 1, 2, . . . , } >
1

2
, (2.4)

and the graph of α0 in terms of the largest interior angle ω is shown in Figure 2, and some
numerical values of α0 are shown in Table 1 [31]. To design high-order accurate numerical
methods, one has to handle the singularities introduced by these two singular sources: domain
corner, and Dirac delta source.

Lemma 2.3 For any ε > 0, let u be the solution of the biharmonic problem (1.1). Then it
follows u ∈ Hmin{3−ε,2+α}(�) ∩ H2

0 (�) with 1
2 < α < α0. Moreover, if ω < π , it holds

u ∈ H3−ε(�) ∩ H2
0 (�); and if ω > π , it holds u ∈ H2+α(�) ∩ H2

0 (�).
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Proof ByLemma 2.1, it follows δx0 ∈ H−1−ε(�). The regularity estimate for the biharmonic
problem (1.1), as given in [5, 6, 20, 27], implies that u ∈ Hmin{3−ε,2+α}(�)∩ H2

0 (�). When
ω < π , one can choose 1 < α < α0, in which case the solution’s regularity is dominated by
the singularity of the Dirac delta source. Conversely, when ω > π , we have α0 < 1, and the
regularity is instead dominated by the corner singularity from the domain. �


2.2 C0 Interior Penalty Method

Let Th be a triangulation of domain � satisfying � = ∑
K∈Th

K . We denote the sets of
interior and boundary edges of Th by EI and EB , respectively. We also set Eh = EI ∪ EB . We
further denote the mesh size of K ∈ Th by hK = diam(K ), and denote by h = maxK∈Th hK .
The length of an edge e ∈ Eh is denoted by he. Here special attention has to be paid that the
elements of Th are shape-regularity, it implies that mesh Th is locally quasi-uniform, i.e., if
two elements Ki and K j satisfy Ki ∩ K j �= ∅, there exists a constant C > 1 such that,

C−1hKi ≤ hK j ≤ ChKi . (2.5)

Throughout the paper, we denote K0 ∈ Th by one element such that the singular point
x0 ∈ K 0, where K 0 is the closure of K0. If x0 lies on an inner edge, either of the two triangles
sharing that edge can be chosen as K0. Similarly, if x0 is a vertex of several triangles, any
one of these triangles can be chosen as K0. The diameter of K0 is denoted by hK0 .

We define the broken Sobolev space Hr (�, Th) associated with the triangulation Th by

Hr (�, Th) = {v ∈ L2(�) : v|K ∈ Hr (K ), ∀K ∈ Th}.
The space Hr (�, Th) equipped with the broken Sobolev norm and seminorm

‖u‖r ,Th =
⎛

⎝
∑

K∈Th

‖u‖2Hr (K )

⎞

⎠

1
2

, |u|r ,Th =
⎛

⎝
∑

K∈Th

|u|2Hr (K )

⎞

⎠

1
2

.

The C0 finite element space is defined by

Vm
h := {vh ∈ H1(�) ∩ C0(�) : vh |K ∈ Pm(K ), ∀K ∈ Th

}
, (2.6)

where Pm(K ) denotes the space of polynomials of degree less than or equal to m ≥ 2 on
the element K . The subspace incorporating homogeneous Dirichlet boundary conditions is
given by

Vm
h,0 := {vh ∈ Vm

h : vh = 0 on ∂�
}
. (2.7)

For each e ∈ EI , we denote K+ and K− by two adjacent triangles that share one common
edge e. The unit outward normal vector n is oriented from K+ to K−. We may designate as
K+ that with the higher of the indices. When e ∈ EB , let K+ be the element with the edge e
and denote by n a unit outward normal vector to ∂K+. For any e ∈ Eh , denote by v+ and v−
the two traces of v along the edge e. Let ωe be the collection of two adjacent elements that
share the common edge e. Specially, we define

ω0
e = {K ∈ Th : ∂K ∩ ∂K0 = e}.

For any K ∈ ωe, by (2.5) and the shape regular assumption, there exist positive constants C1

and C2 such that
C1hK ≤ he ≤ C2hK .
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For a scalar function v and a vector function q that may be discontinuous across e, we define
the following jumps:

[[q]] =
{

(q+ − q−) · n, e ∈ EI ,
q+ · n, e ∈ EB ,

[[v]] =
{

(v+ − v−)n, e ∈ EI ,
v+n, e ∈ EB ,

and averages

{{q}} =
{

1
2 (q+ + q−), e ∈ EI ,
q+, e ∈ EB .

{{v}} =
{

1
2 (v+ + v−), e ∈ EI ,
v+, e ∈ EB .

According to above definition, for ∀v ∈ Hr (�, Th) and ∀q ∈ [Hr (�, Th)]2, it is clearly that
[[qv]] = {{v}}[[q]] + {{q}} · [[v]]. (2.8)

The following identity can be verified by simple algebraic manipulation
∑

K∈Th

∫

∂K
v q · n ds =

∑

e∈EI

∫

e
{{q}} · [[v]] ds +

∑

e∈Eh

∫

e
{{v}}[[q]] ds. (2.9)

The C0 interior penalty method for (1.1) is to find uh ∈ Vm
h,0 such that [35]

Ah(uh, vh) = vh(x0) ∀vh ∈ Vm
h,0, (2.10)

where the bilinear form

Ah(uh, vh) :=
∑

K∈Th

∫

K
�uh�vh dx −

∑

e∈Eh

(∫

e
{{�uh}} [[∇vh]] ds +

∫

e
{{�vh}} [[∇uh]] ds

)

+
∑

e∈Eh

β

he

∫

e
[[∇uh]] [[∇vh]] ds. (2.11)

Here, the penalty parameter β needs to be large enough to ensure the stability of the C0

interior penalty method. Define the energy norm by

|||v|||2 := ah(v, v) +
∑

e∈Eh

β

he
‖[[∇v]]‖2L2(e), ∀v ∈ H2(�, Th), (2.12)

where

ah(u, v) :=
∑

K∈Th

∫

K
�u�v dx.

It can be observed that ||| · ||| defines a norm on the space H2(�, Th).
Recall that a(·, ·) is defined in (2.1), we can observe that

ah(v, v) = a(v, v) ≥ C |v|2H2(�)
, ∀v ∈ H2

0 (�). (2.13)

Then the following inequalities hold.

Lemma 2.4 (Continuity and coercivity [35]) For sufficiently large β, there exists positive
constants Cs and Cb for the bilinear form (2.11), such that

|Ah(uh, vh)| ≤ Cb|||uh ||| ∗ |||vh |||, ∀uh, vh ∈ Vm
h,0, (2.14)

Ah(vh, vh) ≥ Cs |||vh |||2, ∀vh ∈ Vm
h,0. (2.15)

By Lemma 2.4 and the Lax–Milgram Theorem, the discretized problem (2.10) admits a
unique solution.
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2.3 A Priori Error Estimate

Given the regularity outlined in Lemma 2.3, we review the following results, which are
extensively used in the a priori and a posteriori error estimates.

Lemma 2.5 (Trace inequality [11]) For any element K ∈ Th and e ⊂ ∂K, it follows

‖v‖L2(e) ≤ Ch−1/2
K

(‖v‖L2(K ) + hK ‖∇v‖L2(K )

)
, ∀v ∈ H1(K ),

‖∂nv‖L2(e) ≤ Ch−1/2
K

(‖∇v‖L2(K ) + hK ‖∇2v‖L2(K )

)
, ∀v ∈ H2(K ).

Lemma 2.6 (Inverse inequality [11]) For any element K ∈ Th, e ⊂ ∂K, and v ∈ Pm(K ), it
follows

‖v‖L2(e) ≤ Ch−1/2
K ‖v‖L2(K ),

‖∂nv‖L2(e) ≤ Ch−1/2
K ‖∇v‖L2(K ),

‖∇ jv‖L2(K ) ≤ Ch− j
K ‖v‖L2(K ), ∀ 0 ≤ j ≤ m.

Lemma 2.7 (Interpolation error estimate [7, 18]) Let �h : Hq(�) → Vm
h be the standard

Lagrange nodal interpolation operator. Then, for any element K ∈ Th, e ⊂ ∂K, and any
function v ∈ Hq(K ), the following estimates hold:

‖v − �hv‖Hl (K ) ≤ Chs−l
K ‖v‖Hq (K ), for 0 ≤ l ≤ q, q ≥ 0,

‖v − �hv‖L2(e) ≤ Chs−1/2
K ‖v‖Hq (K ), for q > 1,

‖∇(v − �hv)‖L2(e) ≤ Chs−3/2
K ‖v‖Hq (K ), for q > 2,

where s = min{m + 1, q}, and C is a positive constants, which depends only on the shape
regularity of the mesh, but is independent of hK and v.

Lemma 2.8 (Céa’s Lemma) [8, Lemma 8] Let u and uh be the solutions of (1.1) and (2.10),
respectively. Then the following estimate holds:

|||u − uh ||| ≤ C inf
v∈Vm

h,0

|||u − v|||. (2.16)

Therefore, we have the following result.

Lemma 2.9 (A priori error estimate) Let Th be the quasi-uniform triangulation with mesh
size h, and let u ∈ H2

0 (�) be the solution of equation (1.1), and uh be the approximation
solution of (2.10). Then,

|||u − uh ||| ≤ C

⎛

⎝
∑

K∈Th

h2min{1−ε,α}‖u‖2Hmin{3−ε,2+α}(K )

⎞

⎠
1/2

, (2.17)

where α < α0 with α0 given in (2.4).

Proof Let �hu ∈ Vm
h,0 denote the standard Lagrange nodal interpolation of u. By the the

Lemma 2.8 and the definition of the energy norm, this yields

|||u − uh ||| ≤ C |||u − �hu|||
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= C

⎛

⎝
∑

K∈Th

|u − �hu|2H2(K )
+
∑

e∈Eh

β

he
‖[[∇(u − �hu)]]‖2L2(e)

⎞

⎠
1/2

. (2.18)

Recalling the regularity estimate in Lemma 2.3 and applying the interpolation estimates from
Lemma 2.7, the following estimates hold:

|u − �hu|2H2(K )
≤ ‖u − �hu‖2H2(K )

≤ Ch2min{1−ε,α}
K ‖u‖2Hmin{3−ε,2+α}(K )

,

h−1
e ‖[[∇(u − �hu)]]‖2L2(e) ≤ Ch−1

e h
2min{ 32−ε, 12+α}
K ‖u‖2Hmin{3−ε,2+α}(K )

≤ Ch2min{1−ε,α}
K ‖u‖2Hmin{3−ε,2+α}(K )

.

Summing over all elements and edges completes the proof of the estimate (2.17). �


3 Residual-Based a Posteriori Error Estimators

To improve the convergence rate of theC0 interior penalty method in Lemma 2.9, we propose
an adaptiveC0 interior penaltymethod in this section. Specifically,we introduce two residual-
type a posteriori error estimators for problem (1.1). Based on the derived error estimators
and a bisection mesh refinement method, we then develop an adaptive C0 interior penalty
algorithm.

3.1 A Posteriori Error Estimation Based on Primal Problem

The first type of error estimator is obtained in a straightforward manner based on the prob-
lem (1.1). Theoretically, we establish upper and lower bounds to ensure the reliability and
efficiency of the proposed estimator.

Let uh ∈ Vm
h,0 be the approximation solution obtained by the C0 interior penalty method

(2.10) for problem (1.1). For each K ∈ Th , EK represents the set of three edges of element K .
Denote the set of all mesh nodes of the triangulation Th byN . The number of nodes is equal
to the degrees of freedom. For example, N includes vertices and edge center points for the
quadratic polynomial approximation. We propose the following residual-based a posteriori
error estimator on K ∈ Th involving the location of the Dirac point in the mesh

ηK (uh) =
⎧
⎨

⎩

(
h2K0

+ η2K0

)1/2
, if K = K0 and x0 /∈ N ,

ηK , otherwise,
(3.1)

where

ηK (uh) =
⎛

⎝η21,K +
∑

e∈EK∩Eh
αeη

2
2,e +

∑

e∈EK∩EI

αeη
2
3,e +

∑

e∈EK∩EI

αeη
2
4,e

⎞

⎠
1/2

, (3.2)

with αe = 1 for e ∈ EB , αe = 1/2 for e ∈ EI , and

η1,K = h2K ‖�2uh‖L2(K ), η2,e = βh−1/2
e ‖[[∇uh]]‖L2(e), (3.3)

η3,e = h1/2e ‖[[�uh]]‖L2(e), η4,e = h3/2e ‖[[∇�uh]]‖L2(e). (3.4)
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Then the corresponding global error estimator is given by

η(uh) =
⎛

⎝
∑

K∈Th

η2K (uh)

⎞

⎠
1/2

. (3.5)

If x0 is not a vertex of the triangulation, an additional term hK0 appears in the indicators
corresponding to the triangle x0 ∈ K 0.

3.1.1 Upper Bound

To derive the reliability bound of a posteriori error estimator, we introduce the linear operator
Eh mapping elements in Vm

h,0 onto a C1 conforming macro-elements space Sm+2
h of degree

m + 2. For the detailed definition of this C1 conforming macro-elements, refer to [17, 24].
For the convenience of readers, we provide a brief review of the high-order versions of the
classical Hsieh-Clough-Tocher macro-element.

Definition 3.1 ([24]) Let element K ∈ Th . For m ≥ 2, a macro-element of degree m + 2 is
a nodal finite element (K , P̃m+2, Ñm+2). Here, the element K consists of subtriangles Ki ,
i = 1, 2, 3 satisfying K = ∪3

i=1Ki as shown in Figure 3(b). The local element space P̃m+2

on K is defined by

P̃m+2 := {v ∈ C1(K ) : v|K ∈ Pm+2(Ki ), i = 1, 2, 3}. (3.6)

The degrees of freedom Ñm+2 on K consist of all the following values:

• The value and the first (partial) derivatives at the vertices of K ;
• The value at m − 1 distinct points in the interior of each exterior edge of K ;
• The normal derivative at m distinct points in the interior of each exterior edge of K ;
• The value and the first (partial) derivatives at the common vertex of all Ki , where i =

1, 2, 3;
• The value and the normal derivative at m − 2 distinct points in the interior of each edge

of the Ki , where i = 1, 2, 3, that is not an edge of K ;
• The value at (m − 2)(m − 3)/2 distinct points in the interior of each Ki chosen so that,

if a polynomial of degree m − 4 vanishes at those points, then it vanishes identically.

For example, the P̃5 macro-element is aC1 extension of theC0 Lagrange element that consists
of P3 polynomials. These elements are illustrated in Figure 3, where we use the solid dot
(•) to denote the value of the shape functions, the circle (©) to denote the value of all the
first (partial) derivatives of the shape functions, and the arrow (↑) to denote the value of the
normal derivatives.

Denote by ωv the set of elements containing a node v ∈ N , and let �ωv denote the number
of elements in ωv . We construct Eh by averaging the nodal function values as follows:

Nv(Eh(uh)) =
⎧
⎨

⎩

1
�ωv

∑
K∈ωv

Nv(uh |K ), if v /∈ ∂�;
0, if v ∈ ∂�.

(3.7)

Here, Nv represents either the nodal value of a shape function, its first partial derivatives, or
its normal derivative at v, where v is any node in the macro-elements space Sm+2

h .
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Fig. 3 (a) A P3 Lagrange element. (b) A P̃5 C1 conforming macro element

Lemma 3.1 [24, Lemma 2.9] Let uh ∈ Vm
h,0 be the solution of (2.10). Then there exists an

operator Eh : Vm
h,0 → Sm+2

h ∩ H2
0 (�) that satisfies the following bound

∑

K∈Th

|uh − Eh(uh)|2Hl (K )
≤ C

∑

e∈Eh
h3−2l
e ‖[[∇uh]]‖2L2(e), l = 0, 1, 2. (3.8)

Remark 3.2 Different from the estimate in [24], the right-hand side of (3.8) here does not
include the term

∑
e∈Eh h

1−2l
e ‖[[uh]]‖2L2(e)

. This is because Vm
h,0 ⊂ C0(�), then the jump of

uh across any edge e ∈ EI is zero, and uh |e = 0 for e ∈ EB .

To introduce the weak continuity, we introduce the following biharmonic problem

�2u = f in �, u = 0 and ∂nu = 0 on ∂�, (3.9)

where f ∈ L2(�). For (3.9), the following results hold.

Lemma 3.3 [8, 16, 20, 34] For any f ∈ L2(�), the solution u ∈ H2
0 (�) of (3.9) can be

decomposed into the sum of a singular part and a regular part:

u = uS + uR, (4.4)

where uR ∈ H4(�) ∩ H2
0 (�), and uS has the following properties:

(i) uS ∈ H2
0 (�).

(ii) �2uS ∈ C∞(�̄).
(iii) uS is C∞ up to the boundary of �, except at the vertices of �.
(iv) Let Q1, . . . , QJ be the vertices of �. Then

|∂γ
r j ∂

σ
θ j
uS | = O(r1+α−γ

j ) for γ, σ = 0, 1, 2, . . .

in a neighborhood of Q j , where (r j , θ j ) are the polar coordinates at Q j and α < α0.

Lemma 3.4 Let u ∈ H2
0 (�) be the solution of the problem (1.1). Then it can be decomposed

as

u = uR + uS + uP , (3.10)

where the properties of uR and uS are specified in Lemma 3.3, and uP satifies the following
properties:
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(i) uP ∈ H2
0 (�) ∩ H3−ε(�) for any ε > 0.

(ii) �2uP = δx0 in the neighborhood of x0.
(iii) uP is C∞ up to the boundary of �, except at x0.

Proof We partition the domain � into three subregions:

�1 := �
R/2
x0 , �2 := �R

x0 \ �
R/2
x0 , �3 := � \ �R

x0 ,

where �r
x0 denotes the ball of radius r centered at x0, and we assume �R

x0 ⊂ �. In addition,
we introduce a smooth cut-off function η(x0; r) ∈ C∞(�) satisfying

η(x0; r) = 1 for 0 ≤ r ≤ R/2, and η(x0; r) = 0 for r > R.

Define the function

uP = η(x0; |x − x0|) |x − x0|2
8π

ln |x − x0|. (3.11)

Then uP = 0, ∂nuP = 0 on ∂�, and

�2uP =

⎧
⎪⎨

⎪⎩

δx0 , if x ∈ �1,

�2uP ∈ C∞
0 (�2), if x ∈ �2,

0, if x ∈ �3.

(3.12)

Let u1 be the solution to (3.9) with

f =

⎧
⎪⎨

⎪⎩

0, if x ∈ �1,

−�2uP , if x ∈ �2,

0, if x ∈ �3.

(3.13)

It can be verified that f ∈ L2(�), and that the function u = u1 + uP is the solution to (1.1).
By Lemma 3.3, u1 admits the decomposition u1 = uR +uS , and thus the full decomposition
(3.10) holds. �


Then we have the following result.

Lemma 3.5 (Weak continuity)Let u be the solution of the problem (1.1). Then for any interior
edges e ∈ EI ,

∫

e
[[u]] · q ds = 0, ∀q ∈ [L2(e)]2, (3.14)

∫

e
[[∇u]] v ds = 0, ∀v ∈ L2(e), (3.15)

∫

e
[[�u]] · q ds = 0, ∀q ∈ [L2(e)]2, (3.16)

∫

e
[[∇�u]] v ds = 0, ∀v ∈ L2(e). (3.17)

Proof Given that u ∈ Hmin{3−ε,2+α}(�) ∩ H2
0 (�), (3.14) and (3.15) follow immediately.

By Lemma 3.4, the solution u to the problem (1.1) can be decomposed as (3.10). By the
properties of uS and uP in (3.10), it follows that (3.16) and (3.17) are equivalent to

∫

e
[[�uR]] · q ds = 0, ∀q ∈ [L2(e)]2, (3.18)
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∫

e
[[∇�uR]] v ds = 0, ∀v ∈ L2(e). (3.19)

SinceuR ∈ H4(�), the equalities (3.18) and (3.19) hold [39], and consequently, (3.16)–(3.17)
also hold. �


Next, we are ready to present one of the main results.

Theorem 3.6 (Reliability) Let u be the solution of (1.1) and uh ∈ Vm
h,0 be the solution of

(2.10). Then the residual-based a posteriori error estimator η satisfies the global bound

|||u − uh ||| ≤ Cη. (3.20)

Proof Recall the energy norm ||| · ||| in (2.12). It follows

|||u − uh |||2 =
∑

K∈Th

|u − uh |2H2(K )
+
∑

e∈Eh

β

he
‖[[∇(u − uh)]]‖2L2(e).

According to the Lemma 3.5, it is clearly that

‖[[∇(u − uh)]]‖2L2(e) =
∫

e
[[∇u]]2 − 2[[∇u]][[∇uh]] + [[∇uh]]2 ds

=
∫

e
[[∇uh]]2 ds = ‖[[∇uh]]‖2L2(e),

then ∑

e∈Eh

β

he
‖[[∇(u − uh)]]‖2L2(e) =

∑

e∈Eh

β

he
‖[[∇uh]]‖2L2(e) ≤ C

∑

e∈Eh
η22,e.

Let χ = Ehuh ∈ H2
0 (�), the triangle inequality gives

∑

K∈Th

|u − uh |2H2(K )
≤
∑

K∈Th

|χ − uh |2H2(K )
+
∑

K∈Th

|u − χ |2H2(K )
. (3.21)

By Lemma 3.1, it holds
∑

K∈Th

|χ − uh |2H2(K )
≤ C

∑

e∈Eh
η22,e.

To this end, it suffices to show that the second term on the right-hand side of (3.21) satisfies
⎛

⎝
∑

K∈Th

|u − χ |2H2(K )

⎞

⎠
1/2

≤ Cη. (3.22)

By (2.13) and duality argument,
⎛

⎝
∑

K∈Th

|u − χ |2H2(K )

⎞

⎠
1/2

= |u − χ |H2(�) ≤ sup
φ∈H2

0 (�)\{0}

a(u − χ, φ)

|φ|H2(�)

. (3.23)

Denote the continuous interpolation polynomial of φ by φI = �hφ ∈ Vm
h,0. By (2.13), (2.1)

and (2.10),

a(u − χ, φ) = a(u, φ) + ah(uh, φ) − a(χ, φ) − ah(uh, φ)

= a(u, φ) + ah(uh − χ, φ) − ah(uh, φ)
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= 〈δx0 , φ〉 + ah(uh − χ, φ) − ah(uh, φI ) − ah(uh, φ − φI )

= 〈δx0 , φ〉 − Ah(uh, φI ) + ah(uh − χ, φ) + Ah(uh, φI )

− ah(uh, φI ) − ah(uh, φ − φI )

= 〈δx0 , φ − φI 〉 + ah(uh − χ, φ) + Ah(uh, φI ) − ah(uh, φI )

− ah(uh, φ − φI ). (3.24)

To estimate the first term on the right-hand side of (3.24), we consider the following three
possibilities based on the different locations of x0. Recall thatN is the set of all mesh nodes
of the triangulation.

(1) If x0 ∈ N , the values of φI and φ are equal at the node x0, i.e., φ(x0) = φI (x0), then

〈δx0 , φ − φI 〉 = φ(x0) − φI (x0) = 0. (3.25)

(2) If x0 /∈ N , but it is located inside one element K0 ∈ Th , it follows

〈δx0 , φ − φh〉 ≤ ‖φ − φI ‖L∞(K0) ≤ ChK0 |φ|H2(K0)
≤ ChK0 |φ|H2(�). (3.26)

(3) If x0 /∈ N , but it belongs to an internal edge e, then

〈δx0 , φ − φI 〉 ≤ ‖φ − φI ‖L∞(ωe) ≤ ChK0 |φ|H2(ωe)
≤ ChK0 |φ|H2(�). (3.27)

By the Cauchy-Schwarz inequality and Lemma 3.1, the second term in (3.24) follows

ah(uh − χ, φ) ≤
⎛

⎝
∑

K∈Th

|uh − χ |2H2(K )

⎞

⎠
1/2

|φ|H2(�) ≤ C

⎛

⎝
∑

e∈Eh
η22,e

⎞

⎠
1/2

|φ|H2(�).

(3.28)

According to the definition of Ah(·, ·) and ah(·, ·), it is clear that

Ah(uh, φI ) − ah(uh, φI ) = −
∑

e∈Eh

∫

e
{{�uh}} [[∇φI ]] ds −

∑

e∈Eh

∫

e
[[∇uh]] {{�φI }} ds

+
∑

e∈Eh

β

he

∫

e
[[∇uh]] [[∇φI ]] ds.

Recall that φ ∈ H2
0 (�), φI ∈ Vm

h,0. Then φ − φI is continuous, and (φ − φI )|e = 0 for any

e ∈ EB . By Lemma 3.5, it holds
∫
e[[∇φ]]v ds = 0, ∀v ∈ L2(e) for any e ∈ EI . Therefore,

∑

K∈Th

∫

∂K
∇(�uh) · n(φ − φI ) ds =

∑

e∈EI

∫

e
[[∇(�uh)]](φ − φI ) ds,

which together with the integration by parts, and (2.9) yields

−ah(uh, φ − φI ) = −
∑

K∈Th

∫

K
�uh�(φ − φI ) dx

=
∑

K∈Th

(∫

K
∇(�uh) · ∇(φ − φI ) dx −

∫

∂K
�uh∇(φ − φI ) · n ds

)

= −
∑

K∈Th

(∫

K
�2uh(φ − φI ) dx +

∫

∂K
∇(�uh) · n(φ − φI ) ds
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−
∫

∂K
�uh∇(φ − φI ) · n ds

)

= −
∑

K∈Th

∫

K
�2uh(φ − φI ) dx +

∑

e∈EI

∫

e
[[∇(�uh)]](φ − φI ) ds

−
∑

e∈EI

∫

e
[[�uh]] · {{∇(φ − φI )}} ds +

∑

e∈Eh

∫

e
{{�uh}}[[∇φI ]] ds.

The sum of the two qualities above gives

(Ah(uh, φI ) − ah(uh, φI )) − ah(uh, φ − φI )

= −
∑

K∈Th

∫

K
�2uh(φ − φI ) dx +

∑

e∈EI

∫

e
[[∇(�uh)]](φ − φI ) ds

−
∑

e∈EI

∫

e
[[�uh]] · {{∇(φ − φI )}} ds −

∑

e∈Eh

∫

e
[[∇uh]] {{�φI }} ds

+
∑

e∈Eh

β

he

∫

e
[[∇uh]] [[∇φI ]] ds.

Then, we estimate the five terms on the right hand side of the above equation one by one.
Using the Cauchy-Schwarz inequality and Lemma 2.7 gives

∑

K∈Th

∫

K
�2uh(φ − φI ) dx ≤

∑

K∈Th

‖�2uh‖L2(K )‖φ − φI ‖L2(K )

≤ C
∑

K∈Th

h2K ‖�2uh‖L2(K )|φ|H2(K )

≤ C

⎛

⎝
∑

K∈Th

η21,K

⎞

⎠
1/2

|φ|H2(�), (3.29)

∑

e∈EI

∫

e
[[∇(�uh)]](φ − φI ) ds ≤

⎛

⎝
∑

e∈EI

h3e

∫

e
[[∇(�uh)]]2 ds

⎞

⎠
1/2⎛

⎝
∑

e∈EI

h−3
e

∫

e
(φ − φI )

2 ds

⎞

⎠
1/2

≤ C

⎛

⎝
∑

e∈EI

η24,e

⎞

⎠
1/2

|φ|H2(�), (3.30)

and

∑

e∈Eh

β

he

∫

e
[[∇uh ]] [[∇φI ]] ds ≤

⎛

⎝
∑

e∈Eh

∫

e
β2h−1

e [[∇uh ]]2 ds
⎞

⎠
1/2⎛

⎝
∑

e∈Eh
h−1
e

∫

e
[[∇φI ]]2 ds

⎞

⎠
1/2

=
⎛

⎝
∑

e∈Eh

∫

e
β2h−1

e [[∇uh ]]2 ds
⎞

⎠
1/2⎛

⎝
∑

e∈Eh
h−1
e

∫

e
[[∇(φ − φI )]]2 ds

⎞

⎠
1/2

≤ C

⎛

⎝
∑

e∈Eh
η22,e

⎞

⎠
1/2

|φ|H2(�). (3.31)
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For any e = ∂K+ ∩ ∂K− ∈ EI , applying Lemma 2.7 and Lemma 2.6 gives

‖{{∇(φ − φI )}}‖L2(e) ≤ 1

2

(‖∇(φ − φI )|K+‖L2(e) + ‖∇(φ − φI )|K−‖L2(e)

)

≤ C
(‖∇(φ − φI )‖L2(∂K+) + ‖∇(φ − φI )‖L2(∂K−)

)

≤ C
(
h1/2K+|φ|H2(K+) + h1/2K−|φ|H2(K−)

)
,

‖{{�φI }}‖L2(e) ≤ 1

2

(‖�φI |K+‖L2(e) + ‖�φI |K−‖L2(e)

)

≤ C
(
h−1/2
K+ ‖�φI ‖L2(K+) + h−1/2

K− ‖�φI ‖L2(K−)

)

≤ C
[
h−1/2
K+

(‖�(φI − φ)‖L2(K+) + ‖�φ‖L2(K+)

)

+h−1/2
K−

(‖�(φI − φ)‖L2(K−) + ‖�φ‖L2(K−)

)]

≤ C
(
h−1/2
K+ |φ|H2(K+) + h−1/2

K− |φ|H2(K−)

)
.

Recall that he is equivalent to hK+ and hK− . Summing up over all interior edges e ∈ EI leads
to

∑

e∈EI

h−1
e ‖{{∇(φ − φI )}}‖2L2(e) ≤ C

∑

e∈EI

h−1
e

(
h1/2K+|φ|H2(K+) + h1/2K−|φ|H2(K−)

)2

≤ C
∑

e∈EI

h−1
e

(
hK+|φ|2H2(K+)

+ hK−|φ|2H2(K−)

)

≤ C |φ|2H2(�)
,

∑

e∈EI

he‖{{�φI }}‖2L2(e) ≤ C
∑

e∈EI

he
(
h−1/2
K+ |φ|H2(K+) + h−1/2

K− |φ|H2(K−)

)2

≤ C
∑

e∈EI

he
(
h−1
K+|φ|2H2(K+)

+ h−1
K−|φ|2H2(K−)

)

≤ C |φ|2H2(�)
.

Similarly, for any e ∈ ∂K ∩ EB , applying Lemma 2.7 and Lemma 2.6 gives
∑

e∈EB

he‖{{�φI }}‖2L2(e) ≤ C |φ|2H2(�)
.

Then, by using the Cauchy-Schwarz inequality, it holds

∑

e∈EI

∫

e
[[�uh ]] · {{∇(φ − φI )}} ds ≤

⎛

⎝
∑

e∈EI

he

∫

e
[[�uh ]]2 ds

⎞

⎠
1/2⎛

⎝
∑

e∈EI

h−1
e

∫

e
{{∇(φ − φI )}}2 ds

⎞

⎠
1/2

≤ C

⎛

⎝
∑

e∈EI

η23,e

⎞

⎠
1/2

|φ|H2(�), (3.32)

∑

e∈Eh

∫

e
[[∇uh]] {{�φI }} ds ≤

⎛

⎝
∑

e∈Eh
h−1
e

∫

e
[[∇uh]]2 ds

⎞

⎠
1/2⎛

⎝
∑

e∈Eh
he

∫

e
{{�φI }}2 ds

⎞

⎠
1/2
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≤ C

⎛

⎝
∑

e∈Eh
η22,e

⎞

⎠
1/2

|φ|H2(�). (3.33)

The estimates (3.25) - (3.33) imply that (3.22) holds. �


3.1.2 Local Lower Bound

To establish the efficiency of the a posteriori error estimator, we introduce four types “bubble”
functions, along with several key properties that will be frequently used in the error analysis.

Let K̂ denote a reference element, which can be either triangular or rectangular.

• If K̂ is a triangle with the barycentric coordinates λ1, λ2 and λ3, the standard correspond-
ing “bubble” function in K̂ is given by

bK̂ = 27λ1λ2λ3. (3.34)

For a triangle K ∈ Th , we define FK : K̂ → K as an affine element mapping.
• If K̂ is a rectangle with the corresponding coordinates x and y, we denote the “bubble”

function in K̂ by

bK̂ = (1 − x2)(1 − y2). (3.35)

For each internal edge e ∈ EI , let T ⊂ ωe be the largest rhombus contained in ωe that
has e as one of its diagonals. We define FT : K̂ → T as an affine element mapping.

Following the construction in [22], the bubble functions on K ∈ Th and T ⊂ ωe are given
by

bK = bK̂ ◦ FK , bT = bK̂ ◦ FT ,

where they were used in the a posteriori error analysis for fourth-order elliptic problems with
source function in L2(�). However, their construction does not account for the presence of
singular source terms, such as Dirac measures. In particular, the values of bubble functions at
the singularity point x0 generally do not equal to 0, which introduces additional challenges
in the course of our error analysis.

To address this, we further modify the standard “bubble” functions bK and bT to handle
two specific cases involving the singularity point x0. The new “bubble” functions retain
desirable properties such as localization and norm equivalence while additionally ensuring
that they vanish at x0. This modification is crucial for the subsequent proof of the lower bound
of the a posteriori error estimator, as special care is needed to handle the behavior near x0.
Furthermore, we introduce auxiliary bubble functions both on the edges and at the singular
point x0, and establish key properties essential for the analysis.

(1) “Bubble” function on a triangle. The “bubble” function bK on any K ∈ Th is defined
as

bK =
⎧
⎨

⎩
bK̂ ◦ FK , if K ∈ Th\K0,
|x−x0|2
h2K0

bK̂ ◦ FK0 , if K = K0.
(3.36)

Lemma 3.7 For the element “bubble" function bK on a triangle K ∈ Th, it holds

bK (x0) = 0, bK (x) = 0, ∀x ∈ �\K . (3.37)
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Moreover, for ∀v ∈ Pm(K ), it follows

‖v‖L2(K ) ≤ C‖bK v‖L2(K ), ‖b2K v‖L2(K ) ≤ C‖v‖L2(K ). (3.38)

(2) “Bubble” function on a rhombus. For the largest rhombus T contained in ωe, the
“bubble” function bT on T is defined by

bT =
{
bK̂ ◦ FT , if x0 /∈ T ,
|x−x0|2

h2e
bK̂ ◦ FT , if x0 ∈ T ,

(3.39)

where T is the closure of T .

Lemma 3.8 For the “bubble" function bT in rhombus T , it holds

b3T ∈ C2(�) ∩ H2
0 (�), bT (x0) = 0, {{b3T }} = 0 on Eh\e, (3.40)

[[b3T ]] = 0 and [[∇b3T ]] = {{∇b3T }} · n = 0 on Eh . (3.41)

Moreover, for ∀v ∈ Pm(K ), it follows

‖v‖L2(e) ≤ C‖b3/2T v‖L2(e), ‖vb3T ‖L2(ωe)
≤ h1/2e ‖v‖L2(e). (3.42)

(3) “Bubble” function on a edge. Let bl be an affine function that satisfies bl |e = 0 and
(∇bl · n)|e = h−1

e , where n is the unit normal to the edge e. Using the element “bubble"
function definition given above, we define an edge “bubble" function as

be = blb
3
T . (3.43)

Lemma 3.9 For the edge “bubble" function be in (3.43), it holds

be ∈ C2(�) ∩ H2
0 (�), be(x0) = 0, be = 0 in �\T , (3.44)

[[be]] = 0 and [[∇be]] = {{be}} = 0 on Eh, (3.45)

({{∇be}} · n)|e = h−1
e b3T |e, {{∇be}} = 0 on Eh\e, (3.46)

Moreover, for ∀v ∈ Pm(K ), it follows

‖bev‖L2(ωe)
≤ Ch1/2e ‖v‖L2(e). (3.47)

(5) “Bubble” function at a point. Denote ωK by the collection of elements in Th that share
a common edge or vertex with K . Specially, we define the set

ωK0 = {K ∈ Th : K ∩ K 0 �= ∅}, (3.48)

and the distance of x0 to the boundary of ωK0 is defined by d := dist(x0, ∂ωK0). We
define the smooth “bubble” function associated with the point x0 by convolution of the
characteristic function of the set {x ∈ � : |x − x0| < d/4} satisfying

0 ≤ bx0(x) ≤ 1, ∀x ∈ �, |bx0(x)|m,∞,ωK0
≤ Cd−m, m = 1, 2,

bx0(x) = 1, ∀x ∈ � : |x − x0| ≤ d

4
,

bx0(x) = 0, ∀x ∈ � : |x − x0| ≥ 3d

4
.
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Lemma 3.10 Assume that x0 ∈ K 0. For the “bubble” function bx0 , it holds,

|bx0(x)|Hm (ωK0 ) ≤ Ch1−m
K0

, m = 0, 1, 2. (3.49)

‖bx0(x)‖L2(e) ≤ Ch1/2e , e ∈ ∂ωK0 . (3.50)

Proof The proof of (3.49) follow form Lemma 3.2 [1]. For (3.50), the definition of ‖ · ‖L2(e)
yields

‖bx0(x)‖L2(e) =
(∫

e
b2x0(s)ds

)1/2

≤ C

(∫

e
ds

)1/2

= Ch1/2e .

�

With these preparations in place, we are now ready to present our next main result.

Theorem 3.11 (Efficiency) For the local indicator ηK defined in (3.1), there exists a positive
constant C independent of the mesh size satisfying

ηK ≤ C |||u − uh |||ωK . (3.51)

Proof We first prove the estimate (3.51) on the element K 0 whose closure contains x0, but
x0 /∈ N . By the definition of the energy norm, it holds

|||u − uh |||2ωK0
=

∑

K∈ωK0

⎛

⎝|u − uh |2H2(K )
+
∑

e∈EK

β

he
‖[[∇(u − uh)]]‖2L2(e)

⎞

⎠ ,

the estimation (3.51) is equivalent to
⎛

⎝h2K0
+ η21,K0

+
∑

e∈EK0∩EI

αeη
2
3,e +

∑

e∈EK0∩EI

αeη
2
4,e

⎞

⎠
1/2

≤ C |||u − uh |||ωK0
. (3.52)

Then, we prove (3.52) in four steps.
(i) To prove η1,K0 = h2K0

‖�2uh‖L2(K0)
≤ C |||u − uh |||ωK0

. For ∀v ∈ Vm
h,0, using

integration by part gives

v(x0) −
∫

K0

(�2uh)v dx =
∫

K0

�2(u − uh)v dx

= −
∫

K0

∇�(u − uh) · ∇v dx +
∫

∂K0

∇�(u − uh) · nv ds

=
∫

K0

�(u − uh)�v dx −
∫

∂K0

�(u − uh)n · ∇v ds +
∫

∂K0

∇�(u − uh) · nv ds.

(3.53)

We set v|K0 = (�2uh)b2K0
in (3.53), where v ∈ H2

0 (�) ∩ H2
0 (K0) and satisfies v = 0 in

�\K0. Additionally, v is a polynomial on K with bK0(x0) = 0. Then, for ∀e ∈ ∂K0, it holds
that v(x0) = v|e = ∇v|e = 0. Consequently, (3.53) yields

∫

K0

�(u − uh)�v dx = −
∫

K0

�2uhv dx.

According to Lemma 3.7, it holds

‖v‖L2(K0)
≤ C‖�2uh‖L2(K0)

.
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Then, by Cauchy-Schwarz inequality and Lemma 2.6,
∫

K0

(�2uh)v dx ≤ ‖�(u − uh)‖L2(K0)
|v|H2(K0)

≤ Ch−2
K0

|u − uh |H2(ωK0 )‖v‖L2(K0)

≤ Ch−2
K0

|u − uh |H2(ωK0 )‖�2uh‖L2(K0)
. (3.54)

Since �2uh is a piecewise polynomial over K0, according to (3.38) and (3.54), it holds

‖�2uh‖2L2(K0)
≤ C

∫

K0

(�2uh)
2b2K0

dx = C
∫

K0

(�2uh)v dx

≤ Ch−2
K0

|u − uh |H2(ωK0 )‖�2uh‖L2(K0)
,

which implies

h2K0
‖�2uh‖L2(K0)

≤ C |u − uh |H2(ωK0 ) ≤ C |||u − uh |||ωK0
. (3.55)

(ii) To prove
∑

e∈EK0∩EI
αeη

2
3,e = ∑

e∈EK0
h1/2e ‖[[�uh]]‖L2(e) ≤ C |||u − uh |||ωK0

. For

∀e ∈ EK0 ∩ EI , denote by Fe = {e ∈ ∂K : K ∈ ω0
e }. By (2.9), the summation of (3.53) over

all elements K ∈ ω0
e gives

v(x0) −
∑

K∈ω0
e

∫

K
�2uhv dx =

∫

ω0
e

�(u − uh)�v dx +
∑

e∈Fe∩EI

∫

e
[[v]] · {{∇�(u − uh)}} ds

+
∑

e∈Fe

∫

e
{{v}}[[∇�(u − uh)]] ds

−
∑

e∈Fe

∫

e
[[∇v]]{{�(u − uh)}} ds

−
∑

e∈Fe∩EI

∫

e
{{∇v}} · [[�(u − uh)]] ds. (3.56)

We take v = φbe in (3.56), where φ is continuous on e ∈ Eh , and φ is a constant function in
the normal direction to e (i.e., (∇φ · n)|e = 0). By v(x0) = 0, Lemma 3.5, and Lemma 3.9,
the equality (3.56) reduces to

−
∫

ω0
e

�2uhv dx =
∫

e
{{∇v}} · [[�uh]] ds +

∫

ω0
e

�(u − uh)�v dx.

By using Cauchy-Schwarz inequality and Lemma 2.6, the equation above gives
∫

e
[[�uh]] · {{∇v}} ds ≤ ‖�2uh‖L2(ω0

e )
‖v‖L2(ω0

e )
+ |u − uh |H2(ω0

e )
‖�v‖L2(ω0

e )

≤ C
(
h2e‖�2uh‖L2(ω0

e )
+ |u − uh |H2(ω0

e )

)
h−2
e ‖v‖L2(ω0

e )
. (3.57)

We extend ([[�uh]] · n)|e from edge e to ω0
e by taking constants along the normal on e. The

resulting extension E([[�uh]]·n) is a piecewise polynomial inωe. Setting φ = E([[�uh]]·n),
and using (3.42), (3.46) and (3.47) yield

‖[[�uh]]‖2L2(e) ≤ C
∫

e
[[�uh]]2b3T ds = Che

∫

e
[[�uh]] · {{∇v}} ds,

‖v‖L2(ω0
e )

≤ Ch1/2e ‖φ‖L2(e) = Ch1/2e ‖[[�uh]]‖L2(e). (3.58)
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By (3.55), (3.57)-(3.58), it follows

h1/2e ‖[[�uh]]‖2L2(e) ≤ Ch3/2e

∫

e
[[�uh]] · {{∇v}} ds

≤ Ch−1/2
e

(
h2e‖�2uh‖L2(ω0

e )
+ |u − uh |H2(ω0

e )

)
‖v‖L2(ω0

e )

≤ C |||u − uh |||ω0
e
‖[[�uh]]‖L2(e),

which gives

h1/2e ‖[[�uh]]‖L2(e) ≤ C |||u − uh |||ω0
e
. (3.59)

Summing up (3.59) over all edges e ∈ EK0 ∩ EI yields
∑

e∈EK0∩EI

h1/2e ‖[[�uh]]‖L2(e) ≤ C |||u − uh |||ωK0
. (3.60)

(iii) To prove
∑

e∈EK0∩EI
αeη

2
4,e =∑e∈EK0

h3/2e ‖[[∇�uh]]‖L2(e) ≤ C |||u − uh |||ωK0
. We

take v = �b3T in (3.56), where� is continuous on e ∈ Eh and (∇�·n)|e = 0. By b3T (x0) = 0,
Lemma 3.5, and Lemma 3.8, (3.56) can be written as

∫

ω0
e

�2uhv dx +
∫

ω0
e

�(u − uh)�v dx =
∫

e
[[∇�uh]]{{v}} ds. (3.61)

By (3.61), Cauchy-Schwarz inequality, and Lemma 2.6,
∫

e
[[∇�uh]]{{v}} ds ≤C

(
|u − uh |H2(ω0

e )
+ h2e‖�2uh‖L2(ω0

e )

)
h−2
e ‖v‖L2(ω0

e )
. (3.62)

We extend ([[∇�uh]])|e to a function E([[∇�uh]]), defined over ω0
e , by taking it to be con-

stants along lines normal to e. Setting � = E([[∇�uh]]) and using (3.42) yield

‖v‖L2(ω0
e )

≤ Ch1/2e ‖�‖L2(e) = Ch1/2e ‖[[∇�uh]]‖L2(e),

‖[[∇�uh]]‖2L2(e) ≤ C
∫

e
[[∇�uh]]2b3T ds = C

∫

e
[[∇�uh]]{{v}} ds,

≤ Ch−3/2
e

(
|u − uh |H2(ω0

e )
+ h2e‖�2uh‖L2(ω0

e )

)
‖[[∇�uh]]‖L2(e). (3.63)

Form (3.55) and (3.62)-(3.63),

h3/2e ‖[[∇�uh]]‖L2(e) ≤ C
(
h2e‖�2uh‖L2(ω0

e )
+ |u − uh |H2(ω0

e )

)
≤ C |||u − uh |||ω0

e
, (3.64)

Summing up (3.64) over all edges e ∈ EK0 ∩ EI gives
∑

e∈EK0∩EI

h3/2e ‖[[∇�uh]]‖L2(e) ≤ C |||u − uh |||ωK0
. (3.65)

(iv) To prove hK0 ≤ C |||u−uh |||ωK0
. By the weak formulation of (1.1) and Lemma 3.10,

it can be observed

1 = 〈δx0 , bx0〉 ≤
∣∣∣∣
∫

�

�(u − uh)�bx0 dx +
∫

�

�uh�bx0 dx

∣∣∣∣

≤ |u − uh |H2(ωK0 )|bx0 |H2(ωK0 ) +
∣∣∣∣
∫

�

�uh�bx0 dx

∣∣∣∣
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≤ h−1
K0

|u − uh |H2(ωK0 ) +
∣∣∣∣∣

∫

ωK0

�uh�bx0 dx

∣∣∣∣∣ . (3.66)

Let FI = {e ∈ ∂K ∩ EI : K ∈ ωK0}. By integration by parts, Cauchy-Schwarz inequality,
Lemma 3.10 and Lemma 2.6,
∫

ωK0

�uh�bx0 dx =
∑

K∈ωK0

∫

K
�2uhbx0 dx −

∫

∂K
∇(�uh) · nbx0 ds +

∫

∂K
�uh∇bx0 · n ds

=
∑

K∈ωK0

∫

K
�2uhbx0 dx −

∑

e∈FI

(∫

e
[[∇(�uh)]] bx0 ds −

∫

e
[[�uh]] · ∇bx0 ds

)

≤ ‖�2uh‖L2(ωK0 )‖bx0‖L2(ωK0 ) +
∑

e∈FI

‖[[∇(�uh)]]‖L2(e)‖bx0‖L2(e)

+
∑

e∈FI

‖[[�uh]]‖L2(e)‖∇bx0‖L2(e)

≤Ch−1
K0

⎛

⎝h2K0
‖�2uh‖L2(ωK0 )+

∑

e∈FI

h3/2e ‖[[∇(�uh)]]‖L2(e)+
∑

e∈FI

h1/2e ‖[[�uh]]‖L2(e)

⎞

⎠ .

(3.67)

Inserting (3.67) into (3.66) yields

1 ≤ Ch−1
K0

(
|u − uh |H2(ωK0 ) + h2K ‖�2uh‖L2(ωK0 )

+
∑

e∈FI

h3/2e ‖[[∇(�uh)]]‖L2(e) +
∑

e∈FI

h1/2e ‖[[�uh]]‖L2(e)

)
, (3.68)

which, together with (3.55), (3.60), and (3.65), implies

hK0 ≤ C |||u − uh |||ωK0
. (3.69)

The estimate (3.52) follows from (3.55), (3.60), (3.65), and (3.69).
If x0 ∈ N , for ∀K ∈ Th , the term hK vanishes in ηK and the estimation (3.52) reduces to

⎛

⎝η21,K +
∑

e∈EK∩EI

αeη
2
3,e +

∑

e∈EK∩EI

αeη
2
4,e

⎞

⎠
1/2

≤ C |||u − uh |||ωK . (3.70)

Then, the estimate (3.70) is given directly by (3.55), (3.60) and (3.65). �


3.2 A Posteriori Error Estimation Based on Regularized Problem

Inspired by the technique of second-order elliptic equations with a Dirac delta source term,
as discussed in [25], where the L2 projection of the Dirac delta function is used to produce a
regular solution, allowing adaptive procedures based on standard a posteriori error estimators
to work efficiently. This regularization approach using projection techniques can also be
applied for the problem (1.1).

Let Th be a triangulation of � such that | ln hK | ≈ | ln h|, for ∀K ∈ Th , where hK =
diamK and h = maxK∈Th hK . Given K0 ∈ Th and x0 ∈ K0, the Dirac delta function can be
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approximated by δh , defined as

δh =
{
0, in �\K 0,

δK0 , in K0,

where δK0 ∈ Pm(K0) satisfying
∫

K0

δK0v dx = v(x0), ∀v ∈ Pm(K0).

Therefore, it holds
∫

�

δhv dx = v(x0), ∀v ∈ Vm
h,0.

Moreover, it follows [25, 36] that

‖δh‖L2(�) = ‖δh‖L2(K0)
≤ Ch−1

K0
. (3.71)

Recall that for any v ∈ H1
0 (�), the nodal interpolation�hv ∈ Vm

h,0 satisfies the interpolation
error

‖v − �hv‖L2(K0)
≤ ChK0‖v‖H1(K0)

≤ ChK0‖v‖H1(�).

Therefore,

‖δh‖H−1(�) = sup
v∈H1

0 (�)\{0}

∫
K0

δhvdx

‖v‖H1(�)

= sup
v∈H1

0 (�)\{0}

∫
K0

δh(v − �hv)dx + ∫K0
δh�hvdx

‖v‖H1(�)

≤ sup
v∈H1

0 (�)\{0}

‖δh‖L2(K0)
‖v − �hv‖L2(K0)

+ �hv(x0)

‖v‖H1(�)

≤ sup
v∈H1

0 (�)\{0}

ChK0‖δh‖L2(K0)
‖v‖H1(�) + ‖�hv‖L∞(�)

‖v‖H1(�)

≤ C(1 + | ln h|) 1
2 ,

(3.72)

where we have used (3.71) and

‖�hv‖L∞(�) ≤ C(1 + | ln h|) 1
2 ‖�hv‖H1(�) ≤ C(1 + | ln h|) 1

2 ‖v‖H1(�).

Here, the first inequality follows from discrete Sobolev inequality [9, Lemma 4.9.2], and the
second from Lemma 2.7. Similar to Lemma 2.1, for any ε > 0, it follows

‖δh‖H−1−ε (�) ≤ C, (3.73)

where C is a constant independent of hK0 . Let us consider the ensuing auxiliary problem:

�2u = δh in �, u = 0 and ∂nu = 0 on ∂�. (3.74)

The C0 interior penalty method for problem (3.74) is to find uh ∈ Vm
h,0 such that

Ah(uh , vh) = v(x0) =
∫

�
δhvh dx ∀vh ∈ Vm

h,0. (3.75)

The well-posedness of the scheme (3.75) follows from the Lax-Milgram theorem. Let u and
u be exact solutions for the original problem (1.1) and auxiliary problem (3.74), respectively.
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Let uh be corresponding numerical solutions of (3.75). The error estimate can be decomposed
into two parts using the triangular inequality

|||u − uh ||| ≤ |u − u|H2(�) + |||u − uh |||. (3.76)

The first term represents the regularization error, while the second term represents the dis-
cretization error. We estimate the total error by summing the independent contributions from
each part.

The standard regularity estimate, together with the estimate (3.71) applied to (3.74),
implies that ū ∈ Hmin{3,2+α}(�) and,

‖ū‖Hmin{3,2+α} ≤ ‖δh‖Hmin{−1,−2+α} . (3.77)

where α < α0 and α0 is given in (2.4). Then the discretization error can be estimated as [8,
36]

|||u − uh ||| ≤ Dhmin{1,α}, (3.78)

where

D =
{
C(1 + | ln h|)1/2, if α = 1,

C, if α < 1,

for some constant C independent of h.
Referring to [36], the following projection error bound holds

‖δx0 − δh‖H−r (�) ≤ Chr−1, 1 < r ≤ m, (3.79)

where m ≥ 2 is the degree of the polynomial. Using the elliptic regularity theory and (3.79)
yield

|u − u|H2(�) ≤ ‖δx0 − δh‖H−2(�) ≤ Ch. (3.80)

Based on (3.76), (3.78), and (3.80), we have the following result.

Lemma 3.12 Let Th be the quasi-uniform triangulation with mesh size h, and let u and uh
be solutions of (1.1) and (3.75), respectively. Then the following error estimate holds

|||u − uh |||H2(�) ≤ Chmin{1,α},

where C depends on (1 + | ln h|)1/2 when α = 1, and is independent of h when α < 1.

Remark 3.13 Two techniques are empolyed in the C0 interior penalty method to solve prob-
lem (1.1): a direct method (2.10) and a method using the projection technique (3.75).
By comparing the error estimates of the solutions obtained with the direct method (see
Lemma 2.9) and with the projection technique (see Lemma 3.12), we observe that solutions
from both techniques exhibit the same convergence rate on quasi-uniform meshes.

Based on the projection technique, we propose the second residual-based a posteriori error
estimator for the C0 interior penalty method solving problem (1.1) as

ξ(uh) =
⎛

⎝
∑

K∈Th

ξ2K (uh)

⎞

⎠
1/2

, (3.81)
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the local indicator ξK is given by

ξK (uh) =
⎧
⎨

⎩

(
h2K0

+ ξ
2
K0

)1/2
, if K = K0,

ξ K , if K ∈ Th\K0,
(3.82)

where

ξ K (uh) =
⎛

⎝ξ21,K +
∑

e∈EK∩Eh
αeξ

2
2,e +

∑

e∈EK∩EI

αeξ
2
3,e +

∑

e∈EK∩EI

αeξ
2
4,e

⎞

⎠
1/2

, (3.83)

with αe = 1 for e ∈ EB , αe = 1/2 for e ∈ EI , and

ξ1,K = h2K ‖δh − �2uh‖L2(K ), ξ2,e = βh−1/2
e ‖[[∇uh]]‖L2(e),

ξ3,e = h1/2e ‖[[�uh]]‖L2(e), ξ4,e = h3/2e ‖[[∇�uh]]‖L2(e).

The corresponding global upper and local lower bounds are given as follows.

Theorem 3.14 (Reliability) Let u and u be exact solutions for the original problem (1.1) and
auxiliary problem (3.74), respectively. And uh ∈ Vm

h,0 is the solution of (3.75). Then the
residual-based a posteriori error estimator ξ satisfies the global bound

|||u − uh ||| ≤ Cξ. (3.84)

Proof By triangular inequality, the left hand side of (3.84) is bounded from above by

|||u − uh ||| ≤ |||u − u||| + |||u − uh |||.
Using the elliptic regularity bound, Lemma 3.5 and (3.80), the first term can be estimated as
follows

|||u − u|||2 =
∑

K∈Th

|u − u|2H2(K )
+
∑

e∈Eh

β

he
‖[[∇(u − u)]]‖2L2(e) = |u − u|2H2(�)

≤ Ch2K0
.

(3.85)

Similar to the proof of Theorem 3.6, to prove |||u − uh ||| ≤ Cξ , it is sufficient to verify that
⎛

⎝
∑

K∈Th

|u − χ |2H2(K )

⎞

⎠
1/2

≤ sup
φ∈H2

0 (�)\{0}

a(u − χ, φ)

|φ|H2(�)

≤ Cξ, (3.86)

where χ = Ehuh ∈ H2
0 (�). Let φI ∈ Vm

h,0 be the continuous interpolation polynomial of φ.
Then,

a(u − χ, φ) =
∑

K∈Th

∫

K
(δh − �2uh)(φ − φI ) dx + Lh, (3.87)

where

Lh = ah(uh − χ, φ) +
∑

e∈EI

∫

e
[[∇(�uh)]](φ − φI ) ds −

∑

e∈EI

∫

e
[[�uh]] · {{∇(φ − φI )}} ds

−
∑

e∈Eh

∫

e
[[∇uh]] {{�φI }} ds +

∑

e∈Eh

β

he

∫

e
[[∇uh]] [[∇φI ]] ds
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satisfies

Lh ≤ C

⎛

⎝
∑

e∈Eh
ξ22,e +

∑

e∈EI

ξ23,e +
∑

e∈EI

ξ24,e

⎞

⎠
1/2

|φ|H2(�). (3.88)

By the Cauchy-Schwarz inequality and Lemma 2.7, the first term in (3.87) follows

∑

K∈Th

∫

K

(
δh − �2uh

)
(φ − φI ) dx ≤

∑

K∈Th

‖δh − �2uh‖L2(K )‖φ − φI ‖L2(K )

≤ C
∑

K∈Th

h2K ‖δh − �2uh‖L2(K )|φ|H2(K ) ≤ C

⎛

⎝
∑

K∈Th

ξ21,K

⎞

⎠
1/2

|φ|H2(�), (3.89)

which together with (3.85) and (3.88) yields the conclusion. �

Theorem 3.15 (Efficiency)For the local indicator ξK defined in (3.82), there exists a positive
constant C independent of the mesh size such that

ξK ≤
{
C
(
hK0 + |||u − uh |||ωK0

)
, K = K0,

C |||u − uh |||ωK , K ∈ Th\K0.
(3.90)

Proof Let’s first show the element residual term ξ1,K = h2K ‖δh − �2uh‖L2(K ) satisfies the
estimate (3.90). For ∀v ∈ Vm

h,0, using integration by part gives
∫

K
(δh − �2uh)v dx =

∫

K
(δh − δx0)v dx +

∫

K
�2(u − uh)v dx

=
∫

K
(δh − δx0)v dx +

∫

K
�(u − uh)�v dx

−
∫

∂K
�(u − uh)n · ∇v ds +

∫

∂K
∇�(u − uh) · nv ds. (3.91)

We set v|K = (δh − �2uh)b2K in (3.91), where v ∈ H2
0 (�) ∩ H2

0 (K ) and satisfies v = 0 in
�\K . Noticing that v|e = ∇v|e = 0. Consequently, (3.91) yields

∫

K
(δh − �2uh)v dx =

∫

K
(δh − δx0)v dx +

∫

K
�(u − uh)�v dx.

By Lemma 3.7, it holds

‖v‖L2(K ) ≤ C‖δh − �2uh‖L2(K ).

We prove the first case in (3.90), i.e., K = K0. By Cauchy-Schwarz inequality, Lemma 2.6
and (3.80),
∫

K0

(δh − �2uh)v dx ≤ ‖δh − δx0‖H−2(K0)
‖v‖H2(K0)

+ ‖�(u − uh)‖L2(K0)
‖�v‖L2(K0)

≤ Ch−2
K0

(
hK0 + |u − uh |H2(ωK0 )

)
‖v‖L2(K0)

. (3.92)

By (3.38) and (3.92), it holds

‖δh − �2uh‖2L2(K0)
≤ C

∫

K0

(δh − �2uh)
2b2K0

dx = C
∫

K0

(δh − �2uh)v dx
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≤ Ch−2
K0

(
hK0 + |u − uh |H2(ωK0 )

)
‖δh − �2uh‖L2(K0)

,

which implies

h2K0
‖δh − �2uh‖L2(K0)

≤ C
(
hK0 + |u − uh |H2(ωK0 )

)
. (3.93)

Note that (δh − δx0)|K = 0 for any K ∈ Th\K0. Similar to the proof of the first case in
(3.90), it follows

h2K ‖δh − �2uh‖L2(K ) ≤ C |u − uh |H2(ωK ). (3.94)

Verifying other terms in ξK can refer to the proof of Theorem 3.11. �


3.3 Adaptive Finite Element Algorithm

The adaptive finite element algorithm based on the residual-based a posteriori error estimator
(3.5) or (3.81) is summarized as follows.

Algorithm 1 The adaptive finite element algorithm.

1: Input: an initial mesh T 0
h ; a constant 0 < θ ≤ 1; the maximum number of mesh refinements n.

2: Output: the numerical solution unh (resp. unh ); a new refined mesh T n
h .

3: for i = 0 to n do
Solve the discrete equation for the finite element solution uih (resp. uih ) on T

i
h ;

Computing the local and total error estimation ηiK (uih) (resp. ξ iK (uih)) and ηi (uih) (resp. ξ i (uih));
if i < n then

Select a subset T̃h
i ⊂ T i

h of marked elements to refined such that,

⎛

⎜⎝
∑

K∈T̃h i
ηiK (uih)

2

⎞

⎟⎠

1/2

≥ θηi (uih),

⎛

⎜⎜⎝resp.

⎛

⎜⎝
∑

K∈T̃h i
ξ iK (uih)

2

⎞

⎟⎠

1/2

≥ θξ i (uih)

⎞

⎟⎟⎠ ;

Refine the each element K ∈ T̃h
i by longest edge bisection to obtain a new mesh T i+1

h .
end if

end for

4 Extensions

In this section, we extend our results to cover a broader class of fourth-order elliptic equations
with various boundary conditions. Specifically, we generalize the biharmonic operator �2 in
(1.1) to a more general fourth order operator L that includes low order terms

Lu = �2u − μ1�u + μ2u, (4.1)

where μ� ≥ 0 (for � = 1, 2) are constants. Both residual-based a posteriori error estimators,
(3.1) and (3.82), for problem (1.1) can be extended to the new operator. We only present
the first type residual-based a posteriori error estimator for simplicity. The proofs of the
efficiency and reliability are expected to be similar to those provided in Section 3. Therefore,
we will focus solely on presenting the corresponding a posteriori error estimators and leave
their performance to be verified numerically.
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4.1 Non-Homogeneous Dirichlet Boundary Conditions

Consider the following problem:

�2u − μ1�u + μ2u = δx0 + f in �, u = g and ∂nu = gN on ∂�, (4.2)

where gD and gN are given functions on the boundary ∂�, and f is a given function in the
domain �. We assume that g, gN , and f are sufficiently smooth. This problem is a scalar
analog of the variational problem for the strain gradient theory in elasticity and plasticity
[38] when the coefficients satisfy μ1 > 0 and μ2 = 0.

In [8], aC0 interior penalty method was proposed to solve the general fourth-order elliptic
equation without the Dirac delta function term δx0 . In the subsequent section, we extend and
adapt this method to handle the presence of theDirac delta function term δx0 on the right-hand
side of equation (4.2).

We define the space Vm
h associated with the triangulation Th by

Vm
h = {vh ∈ H1(�) ∩ C0(�) : vh |K ∈ Pm(K ), m ≥ 2, ∀K ∈ Th}. (4.3)

Denote the subspace of Vm
h by

Vm
h,g = {vh ∈ Vm

h : vh |∂� = Ihg}, (4.4)

where Ihg ∈ Vm
h is a polynomial approximation function of g by the interpolation on the

boundary.
The C0 interior penalty method for (4.2) is to find uh ∈ Vm

h,g such that
∑

K∈Th

(∫

K
�uh�vh dx + μ1

∫

K
∇uh · ∇vh dx + μ2

∫

K
uhvh dx

)
+
∑

e∈Eh

β

he

∫

e
[[∇uh]] [[∇vh]] ds

−
∑

e∈Eh

( ∫

e
{{�uh}} [[∇vh]] ds +

∫

e
{{�vh}} [[∇uh]] ds

)

=v(x0) +
∑

K∈Th

∫

K
f v dx −

∑

e∈EB

∫

e
gN �v ds +

∑

e∈EB

β

he

∫

e
gN ∇v · n ds, ∀vh ∈ Vm

h,0, (4.5)

where Vm
h,0 is defined as (2.7).

Unlike theC0 interior penaltymethod for problemswith homogeneousDirichlet boundary
conditions described in (2.10), the modified method (4.5) incorporates additional boundary
term. These additional terms account for the non-homogeneous nature of the boundary con-
ditions. The local error estimator on K ∈ Th for C0 interior penalty method (4.2) is given
by

ηK (uh) =
⎧
⎨

⎩

(
h2K0

+ η̃2K0

)1/2
, if K = K0 and x0 /∈ N ,

η̃K , otherwise,
(4.6)

where

η̃K (uh) =
⎛

⎝η̃21,K +
∑

e∈EK∩EI

γeη
2
2,e +

∑

e∈EK∩EI

αeη
2
3,e +

∑

e∈EK∩EI

αeη
2
4,e

+
∑

e∈EK∩EB

γeη
2
5,e +

∑

e∈EK∩EB

γeη
2
6,e

⎞

⎠
1/2

, (4.7)
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with γe = (1 + μ1h2e + μ2h4e)αe, αe = 1 for e ∈ EB , αe = 1/2 for e ∈ EI , and

η̃21,K = h4K ‖ f − �2uh + μ1�uh − μ2uh‖2L2(K )
, (4.8)

η25,e = βh−1/2
e ‖gN − ∇uh · n‖2L2(e), (4.9)

η26,e = h−3/2
e ‖g − uh‖2L2(e). (4.10)

and η2,e, η3,e and η4,e are given in (3.3)-(3.4).

4.2 Navier Boundary Conditions

We also extend the results to the fourth order equation with Navier boundary conditions,

�2u − μ1�u + μ2u = δx0 + f in �, u = g and �u = gB on ∂�, (4.11)

where g and gB are given functions on the boundary ∂�, and f is a given function within
the domain �. We also assume that g, gB , and f are sufficiently smooth. The problem
(4.11) models a simply supported plate problem [37]. When the Dirac delta function term
δx0 vanishes, [10] studied a symmetricC0 interior penalty method for a fourth-order singular
perturbation elliptic problem with these types of boundary conditions in two dimensions on
polygonal domains. The C0 interior penalty method for (4.11) is to find uh ∈ Vm

h,g such that

∑

K∈Th

(∫

K
�uh�vh dx + μ1

∫

K
∇uh · ∇vh dx + μ2

∫

K
uhvh dx

)
+
∑

e∈EI

β

he

∫

e
[[∇uh ]] [[∇vh ]] ds

−
∑

e∈EI

( ∫

e
{{�uh}} [[∇vh ]] ds +

∫

e
{{�vh}} [[∇uh ]] ds

)

=v(x0) +
∑

K∈Th

∫

K
f v dx +

∑

e∈EB

∫

e
gB ∇v · n ds. ∀vh ∈ Vm

h,0, (4.12)

where Vm
h is defined as (2.7). The local error estimator for the C0 interior penalty method

(4.12) is given by

ηK (uh) =
⎧
⎨

⎩

(
h2K0

+ ζ 2
K0

)1/2
, if K = K0 and x0 /∈ N ,

ζK , otherwise,
(4.13)

where

ζK (uh) =
⎛

⎝η̃21,K +
∑

e∈EK∩Eh
γeη

2
2,e +

∑

e∈EK∩EI

αeη
2
3,e +

∑

e∈EK∩EI

αeη
2
4,e

+
∑

e∈EK∩EB

ζ 2
5,e +

∑

e∈EK∩EB

γeη
2
6,e

⎞

⎠
1/2

, (4.14)

the element residual η̃1,K and the edge residuals η2,e, η3,e, η4,e, η6,e are defined as (4.7). The
boundary residual term ζ5,e is defined by

ζ 2
5,e = h1/2e ||gB − �uh ||2L2(e). (4.15)
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4.3 Homogeneous Neumann Boundary Conditions

For fourth-order elliptic equations with homogeneous Neumann boundary conditions, we
consider the following model

�2u − μ1�u + μ2u = δx1 − δx0 in �, ∂nu = 0 and ∂n(�u) = 0 on ∂�. (4.16)

wherex0, x1 represent twodistinct points strictly contained in the domain�. These boundary-
value problems can arise in the Cahn-Hilliard model, which describes phase-separation
phenomena [14]. [9] proposed a quadraticC0 interior penaltymethod for fourth-order bound-
ary value problems with similar types of boundary conditions, assuming the right-hand side
function f ∈ L2(�). Under these conditions, a unique solution u can be found, satisfying
u ∈ H2+α(�) for α ∈ (0, 2].

It is straightforward to validate the solvability condition:
∫

�

δx1 − δx0 dx = 0.

To obtain a unique solution, a common approach is to impose an additional constraint
∫

�

u dx = 0.

We define a subspace of H1(�) by

V = {vh ∈ H1(�) : ∂nvh = 0,
∫

�

vh dx = 0}.

The finite element space Xm
h associated with the triangulation Th is defined as

Xm
h = {vh ∈ V ∩ C0(�) : vh |K ∈ Pm(K ), m ≥ 2, ∀K ∈ Th}. (4.17)

The C0 interior penalty method for (4.16) is then to find uh ∈ Xm
h such that

∑

K∈Th

(∫

K
�uh�vh dx + μ1

∫

K
∇uh · ∇vh dx + μ2

∫

K
uhvh dx

)

+
∑

e∈Eh

β

he

∫

e
[[∇uh]] [[∇vh]] ds −

∑

e∈Eh

( ∫

e
{{�uh}} [[∇vh]] ds +

∫

e
{{�vh}} [[∇uh]] ds

)

= v(x1) − v(x0), ∀vh ∈ Xm
h . (4.18)

Note that the bilinear in (4.18) is identical to that in (4.5), with the exception that the finite
element space now includes only functions with a zero mean value.

Denote K1 ∈ Th by one element such that the singular point x1 ∈ K 1, where K 1 is the
closure of K1.The diameter of K1 is denoted by hK1 . The local error estimator for problem
(4.11) is given by

ηK (uh) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
h2K0

+ χ2
K0

)1/2
, if K = K0, and x0 /∈ N ,

(
h2K1

+ χ2
K1

)1/2
, if K = K1, and x1 /∈ N ,

χK , otherwise.

(4.19)

123



   60 Page 32 of 41 Journal of Scientific Computing           (2025) 105:60 

Table 2 Example 5.1: Convergence rate of numerical solution in uniform meshes

P2 P3 P4
j 4 5 6 7 3 4 5 6 3 4 5 6

R 0.88 0.85 0.80 0.73 1.00 0.73 0.60 0.56 0.74 0.58 0.56 0.55

where

χK (uh) =
⎛

⎝η̃21,K +
∑

e∈EK∩Eh
γeη

2
2,e +

∑

e∈EK∩EI

αeη
2
3,e +

∑

e∈EK∩EI

αeη
2
4,e

⎞

⎠ . (4.20)

The definition of χK (uh) is same as ζK (uh) in (4.14), except for discarding the the boundary
residual term ζ5,e.

5 Numerical Examples

In this section, we present numerical test results to verify the accuracy of the C0 interior
penalty method and demonstrate the robustness of the proposed residual-type a posteriori
estimators. If the exact solution u is given, the convergence rate is calculated by

R = log2
|u − u j−1

h |H2(�)

|u − u j
h |H2(�)

, (5.1)

where u j
h is the C

0 finite element solution on the mesh T j
h obtained after j th refinements of

the initial triangulation T 0
h . When the exact solution is unavailable or difficult to obtain, we

instead use the following numerical convergence rate

R = log2
|u j

h − u j−1
h |H2(�)

|u j+1
h − u j

h |H2(�)

. (5.2)

Due to the lack of regularity, the C0 interior penalty method with high-degree polynomial
approximations on quasi-uniform triangular meshes may not achieve optimal convergence
rates. To address this, we apply an adaptive C0 interior penalty method to improve the
convergence order.

The convergence rate of the a posteriori error estimator η (resp. ξ ) for Pm polynomials
with m ≥ 2 is quasi-optimal if

η ≈ N−0.5(m−1) (resp. ξ ≈ N−0.5(m−1)).

Here and in what follows, we abuse the notation N to represent the total number of degrees
of freedom.

Example 5.1 (L-shape domain) We consider problem (1.1) with homogeneous clamped
boundary conditions in an L-shaped domain � = (−2π, 2π)2\[0, 2π) × (−2π, 0] with
a largest interior angle ω = 3π/2. The Dirac point x0 = (−π, π), then the solution show
singularities at two points (0, 0) and x0. We start with an initial mesh T 0

h as Figure 4(a).
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Fig. 4 Example 5.1: initial mesh and adaptive numerical solution

Fig. 5 Example 5.1: adaptive meshes generated by η

Table 2 shows the H2 convergence history using the Pm-basedC0 interior penalty method
on quasi-uniform meshes, with m = 2, 3, 4. From the results, we observe that the conver-
gence rates are R ≤ 1 on coarse meshes, and R ≈ 0.5445 on sufficiently refined meshes.
This indicates that the singularity in the solution is primarily influenced by the reentrant
corner of the polygonal domain whenω > π . The results in Table 2 align with the theoretical
expectations outlined in Lemma 2.3.

We then assess the efficiency of the a posteriori error estimators. Meshes generated by η

in (3.5) and ξ in (3.81) are shown Figure 5 and Figure 6, respectively. It is evident that the
error estimators effectively guide mesh refinements around the points (0, 0) and (−π, π),
where the solution shows singularities. As shown in Figure 7, the slopes for the estimators
are close to−0.5(m−1)when there are sufficient grid points, indicating optimal decay of the
error with respect to the number of unknowns. The contours of the corresponding numerical
solutions based on η and ξ are shown in Figure 4(b)-(c), they are very similar.

7

Example 5.2 (Non-homogeneous boundary) In this example, we consider a more general
biharmonic equation

�2u − μ1�u + μ2u = δx0 + f , (5.3)

where the location of x0 in Th are of three different types as shown in Case 1-3. The initial
meshes of Cases 1-3 are reported in Figure 8.

Case 1: x0 = (0, 0) is a node of the triangulations.
Case 2: x0 = (−√

7,−π) belongs to an inter edge e ∈ EI .
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Fig. 6 Example 5.1: adaptive meshes generated by ξ

Fig. 7 Example 5.1: error estimators

Fig. 8 Example 5.2: initial meshes

Case 3: x0 = (
√
5,

√
8) is contained by one element K ∈ Th .

We take the function

f (x) = μ2
|x − x0|2

8π
ln |x − x0| − μ1

(
ln |x − x0|

2π
+ 1

2π

)
, (5.4)

then the exact solution of equation (5.3) is given by

u(x) = |x − x0|2
8π

ln |x − x0|. (5.5)

Following the definition of the fractional order Sobolev space in the beginning of Section 2,
it can be verified that the exact solution u ∈ H3−ε(�) for any ε > 0. We consider (5.3) with
two different boundary conditions and the parameters in (5.3) are taken as μ1 = μ2 = 1.
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Table 3 Example 5.2 Test 1: Convergence rate of numerical solution in uniform meshes.

P2 P3 P4
j 4 5 6 7 3 4 5 6 2 3 4 5

Case 1 0.99 0.99 1.00 1.00 1.60 1.41 1.18 1.06 1.97 1.59 1.14 1.02

Case 2 0.98 0.99 0.99 1.00 1.67 1.72 1.20 0.96 1.72 1.59 1.35 0.87

Case 3 0.98 0.99 0.99 1.00 1.68 1.72 1.33 1.23 1.93 1.60 1.32 0.94

Table 4 Example 5.2 Test 2: Convergence rate of numerical solution in uniform meshes

P2 P3 P4
j 4 5 6 7 3 4 5 6 2 3 4 5

Case 1 0.99 0.99 1.00 1.00 1.60 1.41 1.18 1.06 1.97 1.59 1.14 1.02

Case 2 0.98 1.00 0.99 1.00 1.67 1.72 1.19 0.95 1.68 1.57 1.35 0.87

Case 3 0.99 0.99 0.99 1.00 1.71 1.75 1.33 1.23 1.94 1.58 1.32 0.94

Test 1.We first consider non-homogeneous campled boundary conditions. The convergence
rates of theC0 interior penaltymethod solutions based on P2, P3 and P4 polynomials forCase
1-3 in quasi-uniform meshes are shown in Table 3. The convergence rates are approximately
R ≈ 1. While the convergence rates for P2 are quasi-optimal, the rates for P3, P4 only
achieve suboptimal convergence. This is due to u ∈ H3−ε(�). Given the low regularity of
the solution u, these results are the best that can be achieved with quasi-uniform meshes.

To address this, we apply the adaptive C0 interior penalty method based on the residual-
based a posteriori error estimator ηK in (4.6). The corresponding numerical solutions of the
adaptive algorithm using the error estimator η are presented in Figure 11. Figure 9 and Fig-
ure 10 show the adaptive meshes of P3, P4 approximations, respectively. The error estimator
effectively guides mesh refinements, particularly around the point x0. The convergence rates
of the error estimator η based on P3, P4 polynomials are illustrated in Figures 12(a)-(b),
respectively. These results suggest that the convergence rates of η are quasi-optimal for all
three cases. Furthermore, with mesh refinement, the convergence slopes of the error esti-
mators for Cases 1-3 nearly coincide. This demonstrates the superior performance of the
adaptive algorithm based on the a posteriori error indicator presented in this work, especially
when compared with uniform refinement.
Test 2. We set the non-homogeneous Navier boundary conditions. Similar to Test 1, we
apply both the C0 interior penalty method and the adaptive C0 interior penalty method to
this problem. Numerical results in uniform meshes are listed in Table 4. We perform P3
and P4 polynomial approximations using the adaptive C0 interior penalty method, with the
numerical results displayed in Figures 13,14,15,16. The results obtained are similar to those
in Test 1. As mentioned earlier, (i) the convergence rates on uniform meshes are R ≈ 1;
(ii) the position of the Dirac point within the cell has a negligible effect on the convergence
rates, whether the meshes are adaptively refined or uniformly refined; (iii) refinements are
concentrated around the point x0; (iv) The convergence rates of η are quasi-optimal.

Example 5.3 (Homogeneous Neumann boundary) For the final example, we consider prob-
lem (4.16) with homogeneous Neumann boundary on convex domain � = (−2π, 2π) ×
(−2π, 2π). The right-hand side function is given as δx1 − δx0 , where x0 = (−π, 0), x1 =
(π, 0). An initial uniform triangular mesh T 0

h is shown in Figure 17(a).
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Fig. 9 Example 5.2 Test 1: adaptive meshes for P3

Fig. 10 Example 5.2 Test 1: adaptive meshes for P4

Fig. 11 Example 5.2 Test 1:adaptive solution for P3

The convergence rates of the C0 interior penalty method solutions based on Pm, m =
2, 3, 4 polynomials on quasi-uniform meshes are shown in Table 5. We observe thatR ≈ 1.
Due to the low global regularity of the solution, the convergence rates on quasi-uniform
meshes can not reach the optimal order for P3, P4 polynomial approximations. For enhanced
accuracy, the adaptiveC0 interior penaltymethod is better suited for this type of problem. The
contour of adaptiveC0 interior penaltymethod approximation based on P3 is shown in Figure
18(a). Figure 17(b)-(c) show the adaptive meshes of P3, P4 polynomial approximations,
respectively. We can see clearly that the error estimator guides the mesh refinement densely
around the points x0 and x1. The convergence rates of error estimator η based on P3, P4
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Fig. 12 Example 5.2 Test 1: error estimators

Fig. 13 Example 5.2 Test 2: adaptive meshes for P3

Fig. 14 Example 5.2 Test 2: adaptive meshes for P4

polynomials are shown Figure 18(b)-(c). These results align with expectations, indicating
that the convergence rates of the error estimator are quasi-optimal.
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Fig. 15 Example 5.2 Test 2: adaptive solution for P3

Fig. 16 Example 5.2 Test 2: error estimators

Table 5 Example 5.3: Convergence rate of numerical solution in uniform meshes

P2 P3 P4
j 4 5 6 7 3 4 5 6 2 3 4 5

R 0.87 0.90 0.91 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Fig. 17 Example 5.3: initial mesh and adaptive meshes
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Fig. 18 Example 5.1: numerical solution and error estimators

6 Conclusion

Two residual-based a posteriori estimators are proposed for biharmonic problem (1.1). The
first estimator is directly derived from the model equation, while the second estimator is
based on the projection of the Dirac delta function onto the discrete finite element space. The
later one introduces an additional projection error, which is included in the error estimator,
yielding a similar effect to the first estimator in guidingmesh refinement. For both a posteriori
estimators, we rigorously prove that these estimators are efficient and reliable. An adaptive
C0 interior penalty algorithm is provided based on the proposed a posteriori estimators.
Extensions of the first estimator to more general fourth order elliptic equations are provided,
and quasi-optimal convergence rates are numerically observed.

For the biharmonic problem (1.1) in three dimensions, the geometry of edges and corners
significantly affects the regularity of the solution. Moreover, the singularity introduced by
the Dirac delta function differs from that in two dimensions. Although theC0 interior penalty
method can be extended to three dimensions, the results and analysis may differ substantially.
We leave this investigation for future work.
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