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Abstract

In this paper, we study two residual-based a posteriori error estimators for the C interior
penalty method in solving the biharmonic equation in a polygonal domain under a con-
centrated load. The first estimator is derived directly from the model equation without any
post-processing technique. We rigorously prove the efficiency and reliability of the estimator
by constructing bubble functions. Additionally, we extend this type of estimator to general
fourth-order elliptic equations with various boundary conditions. The second estimator is
based on projecting the Dirac delta function onto the discrete finite element space, allowing
the application of a standard estimator. Notably, we additionally incorporate the projection
error into the standard estimator. The efficiency and reliability of the estimator are also ver-
ified through rigorous analysis. We validate the performance of these a posteriori estimates
within an adaptive algorithm and demonstrate their robustness and expected accuracy through
extensive numerical examples.
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1 Introduction

In this paper, we are interested in an adaptive C? interior penalty method for the biharmonic
problem in polygonal domain £ C R? with a concentrated load [12, 40]

A2u=5xO inQ, u=0 and dyu =0 onodQ. (1.1)

The boundary conditions are known as homogeneous Dirichlet boundary conditions or
clamped boundary conditions [28], where dpu denotes the outward normal derivative of
u on dK2. 8, is a Dirac delta function concentrated at a point X € ¢ C 2 satisfying

(8xy> V) = v(X0), Vv e C(Q).

Elliptic problems with Dirac delta source terms are encountered in various applications,
such as the electric field generated by a point charge, transport equations for effluent dis-
charge in aquatic media, modeling of acoustic monopoles [2, 21, 26, 30]. The biharmonic
problem can be used to study the small deflections of a thin plate, especially the biharmonic
problem (1.1) with the Dirac delta source term describes the deflections for thin plates with
a concentrated load [12, 40].

The Dirac measure in (1.1) does not belong to H -1, resulting in the solution exhibiting
low regularity. Analytical solutions for biharmonic problem (1.1) are typically challenging,
though they exist for some special cases of geometry and loads. For example, analytical meth-
ods for the biharmonic problem (1.1) have primarily focused on circular and annular domains
(see, e.g., [12, 15, 40]). Consequently, numerical methods have garnered widespread atten-
tion for solving (1.1), such as the boundary element method [12], the regular hybrid boundary
node method [41]. Discussion on various numerical methods for biharmonic problem (1.1)
can be found in [41] and the references therein. Among various numerical methods, the finite
element method is the most popular.

Finite element methods developed for the general biharmonic equation with Dirichlet
boundary conditions can typically be applied to solve the specific biharmonic problem (1.1).
The conforming finite element method is one approach, where the presence of high-order
derivatives necessitates finite element spaces that belong to H2, such as the C! Argyris finite
element method [3]. Additionally, the general biharmonic problem can be decomposed into
Poisson and Stokes equations, which are then solved using the C finite element method
[31]. However, whether this decomposition strategy is effective for problem (1.1) remains
to be explored since such decomposition requires the source term in H ! () or its subset.
Another option that utilizes the C? finite element space, yet can still accommodate singular
source terms not in H~!(), is the C interior penalty method [19]. Its stability is ensured
by penalty terms enforced across the mesh cell interfaces.

For the biharmonic problem (1.1), some finite element methods and error analyses are
available in the literature. A C! finite element approximation was proposed in [36], and
optimal error estimates were studied on quasi-uniform meshes, in which the H? error estimate
is of order & when using polynomials of degree greater than 2. More recently, a C° interior
penalty method was studied in [29], and a local H 2 error estimate of order |1nh|% was
given on quasi-uniform meshes. Due to the low regularity of the solution, the convergence
rates on quasi-uniform meshes are inherently limited. To improve the convergence rate in the
finite element approximation, adopting an adaptive finite element method becomes necessary.
Thus, the primary objective of this paper is to develop an adaptive C interior penalty method
for the biharmonic problem (1.1).
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Many adaptive finite element methods are available for second order elliptic equations with
Dirac delta source term. Tough &y, is not in H “1(Q)and u ¢ H' (), the C 0 finite element
method can still approximate the equations. However, direct application of the residual-based
a posteriori error estimator using standard energy norms is not viable. In the literature, two
typical strategies have been studied to address this issue. One approach is to utilize norms
weaker than H!(Q) for error estimation. For instance, Araya et al. [1] derived a posteriori
error estimators in L?(1 < p < o0) norm and WI*P(po < p <2, po€[l,2)) seminorms
for a Poisson problem with a Dirac delta source term on two-dimensional domains. Gaspoz
et al. [23] provided a posteriori error estimates in H I=s s € (0, %) norm. Additionally, a
global upper bound and a local lower bound of residual type a posteriori error estimators in a
weighted Sobolev norm || - || ] with o € (% -1, %) (d is the spatial dimension) for elliptic
problems were obtained by Agmon et al. in [4]. Another is to regularize the source term to an
L?(2) function by projecting it onto a polynomial space, potentially introducing a projection
error. This regularization allows the application of standard residual-based a posteriori error
estimators for general Poisson problems. For further insights, readers are referred to early
review articles, such as [25, 33].

Results on a posteriori error estimates of the C” interior penalty method for biharmonic
problems with Lz(Q) source terms can be found in [24]. However, no result is available for
the fourth order elliptic equation with the Dirac delta source term, which does not belong
to H~1(), not to mention in L2($2). Therefore, to improve the accuracy of the numerical
solution while optimizing the distribution of computational resources, we propose two types
of residual-based a posteriori error estimators for the biharmonic problem (1.1) to guide mesh
adaptive refinement around singular points.

The first type of a posterior error estimator is derived based on the primal equation (1.1).
Depending on the location of x¢ in the computational element, this error estimator can take
different forms. Specifically, if xo is not a vertex, an additional term that depends on the
size of the element will be required. We rigorously prove the upper and lower bounds of the
proposed estimator to ensure its reliability and efficiency. Moreover, we extend this residual-
type a posteriori error estimator to fourth-order elliptic equations with various boundary
conditions.

The second type of a posterior error estimator is proposed based on the projection tech-
niques. We first project 8x, onto &y in the finite element space, and then use this projection
8y to construct a residual-type a posteriori error estimator. This method introduces an addi-
tional error between 6, and dx,, which is shown to be of the same order as the finite element
approximation. Therefore, it does not compromise the accuracy of the numerical solution.
This is further supported by our error analysis and numerical experimental results.

The rest of the paper is organized as follows. In Section 2, we establish the well-posedness
and discrete problem of (1.1) by the C interior penalty method. The main results are
presented in Section 3, where we propose two types of residual-based a posteriori error
estimators, upper and lower bounds are proved in order to guarantee the reliability and the
efficiency of the proposed estimators. In Section 4, we extend our results to a broader class of
fourth-order elliptic equations with various boundary conditions. Section 5 provides numer-
ous numerical examples to illustrate the robustness of our estimators and the corresponding
adaptive C? interior penalty method. Finally, we draw some conclusions in Section 6.

Throughout the paper, the generic constant C > 0 in our estimates may differ at different
occurrences. It will depend on the computational domain, but not on the functions involved
or on the mesh level in the finite element algorithms.
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2 Preliminaries and C Interior Penalty Method

Denote by H™(£2), m is a non-negative integer, the Sobolev space that consists of functions
whose ith (0 < i < m) derivatives are square integrable. Let L%(Q) := H%(). Denote by
HO1 () Cc H'(R) the subspace consisting of functions with zero trace on the boundary 9.
Fors > 0,lets =m + ¢, where m € Z>p and 0 < ¢t < 1. For a subset D C RY withd > 1,
the fractional order Sobolev space H* (D) consists of distributions v in D satisfying

10" v(x) — 3" v(y)[?
Wl py = 0lFmepy + D / / dxdy < oo,
H*(D) H™(D) »Jp |x _y|d+2t

[v|=m

where v = (v, ---,vg) € Zio is a multi-index such that 3" = 8, ---8}){;’ and |v| =

Z?:l Vi-
2.1 Well-Posedness and Regularity

We first show the well-posedness of the problem (1.1).

Lemma 2.1 For any € > 0, it follows that the point Dirac delta function 8x, € H™'7¢(Q)
and satisfies
lx) Il r—1-¢ () < C.

Proof For any v € HOHG (2) with € € (0, 1), the embedding theorem [13] implies that
v e CO(Q) C C%Q). Then,

[{0x> V)| = [v(X0)| < [[vllLee() < Cllvllgive (g,

and it follows

[{8xy» V)|
180 Il -1-¢ (@) := sup —— T <
ve HITE (@)\{0) Vil g1+e )

For € > 1, it holds that v € HOIJre () c HX(Q) — C%£), so the same estimate remains
valid. ]

Remark 2.2 For parameter € mentioned in Lemma 2.1, we primarily consider € € (0, 1] in
the following analysis, with particular emphasis on values of € that are sufficiently close to
0.

The variational formulation for problem (1.1) is to find u € Hg(Q), such that
a(u,v) = / AuAvdx = <6X0, v), Yve HOZ(Q). 2.1
Q

The Sobolev imbedding theorem [32] implies v € C(2) forv € HOZ(Q), thus the variational
formulation (2.1) is well-posed.

We sketch a drawing of the domain €2 with a singular point X in Figure 1. We assume the
largest interior angle @ € [%, 27) of the domain associated with the vertex Q. For simplicity
of the analysis, we assume ‘that

) w? sin? w
sin [ 1 [1- 22 (22)
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Fig.1 Domain Q2 with interior
angle w contains a singular point

X0

a, in terms of the interior angle w

Fig.2 «( in terms of the largest interior angle w

Letze, £ = 1,2, ... satisfying Re(z;) > 0 be the solutions of the following characteristic
equation

sin?(zw) = 7% sin®(w). (2.3)

Then there exists a threshold

oo ;= min{Re(z¢), £ =1,2,...,} > 2.4

5 )
and the graph of «g in terms of the largest interior angle w is shown in Figure 2, and some
numerical values of o are shown in Table 1 [31]. To design high-order accurate numerical
methods, one has to handle the singularities introduced by these two singular sources: domain
corner, and Dirac delta source.

Lemma 2.3 For any € > 0, let u be the solution of the biharmonic problem (1.1). Then it

follows u € HMin(3—e.24a} Oy N HOZ(Q) with % < a < ap. Moreover, if o < m, it holds
ue H¥€(Q) N HQ); and if o > 7, it holds u € H*** () N HZ ().
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Proof By Lemma?2.1,itfollows 8y, € H —1=¢(Q). The regularity estimate for the biharmonic
problem (1.1), as given in [5, 6, 20, 27], implies that u € Hmin3—e.24ab ()N Hg(Q). When
w < 1, one can choose 1 < @ < o, in which case the solution’s regularity is dominated by
the singularity of the Dirac delta source. Conversely, when w > 7, we have g < 1, and the
regularity is instead dominated by the corner singularity from the domain. O

2.2 C° Interior Penalty Method

Let 7;, be a triangulation of domain € satisfying @ = > KeT, K. We denote the sets of
interior and boundary edges of 7;, by £; and £p, respectively. We also set £, = £ U Ep. We
further denote the mesh size of K € 7, by hx = diam(K), and denote by h = maxge7;, hk.
The length of an edge e € &, is denoted by h.. Here special attention has to be paid that the
elements of 7j, are shape-regularity, it implies that mesh 7j, is locally quasi-uniform, i.e., if
two elements K; and K; satisfy KN Fj = (), there exists a constant C > 1 such that,

C'hk, < hk,; < Chg,. (2.5)

Throughout the paper, we denote Ko € 7, by one element such that the singular point
xo € K, where K is the closure of K. If xg lies on an inner edge, either of the two triangles
sharing that edge can be chosen as K. Similarly, if X¢ is a vertex of several triangles, any
one of these triangles can be chosen as K. The diameter of Ky is denoted by /A ,,.

We define the broken Sobolev space H" (€2, 7;) associated with the triangulation 7, by

H' (Q,7) ={vel*Q): vlx € H(K), VK €T}

The space H" (2, 7p,) equipped with the broken Sobolev norm and seminorm

1 1

2 2

2 2
lullrz, = D Nl | - lulez = D lulir

KeTy KeT,
The C? finite element space is defined by
Vit = {un e H'(@ N CO(Q) : vilg € Pu(K), VK € Tp}, (2.6)

where P, (K) denotes the space of polynomials of degree less than or equal to m > 2 on
the element K. The subspace incorporating homogeneous Dirichlet boundary conditions is
given by

Vit :={vn € Vi : vy =0 0n 9} (2.7)

Foreach e € &, we denote K+ and K~ by two adjacent triangles that share one common
edge e. The unit outward normal vector n is oriented from K to K ~. We may designate as
K™ that with the higher of the indices. When e € £, let K be the element with the edge e
and denote by n a unit outward normal vector to K . For any e € &, denote by v+ and v~
the two traces of v along the edge e. Let w, be the collection of two adjacent elements that
share the common edge e. Specially, we define

) ={K €T :9KNdKy = e}.

For any K € w,, by (2.5) and the shape regular assumption, there exist positive constants C
and C; such that
Cihg < he < Cohk.
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For a scalar function v and a vector function q that may be discontinuous across e, we define
the following jumps:

(qt—q7)-n eeé, _Jwt—=vm, eegy,
[[q]]—{ + . n, e € &g, vl = vTn, e €&p,

and averages

1 + — 1 + _
_ )@ +q7), ecéy, st 4, eely,
{{q}}_[qﬂ ceep. =1 e € Ep.

According to above definition, for Vv € H" (2, 7;) and Vq € [H" (2, ’]},)]2, it is clearly that
[qv]l = {viilal + {q} - [v]. (2.8)
The following identity can be verified by simple algebraic manipulation
> [ vaenas=3 [tar-nas+ Y [rontanes 2.9)
KeTy, eely ee&y
The C? interior penalty method for (1.1) is to find uj, € V;o such that [35]
Ap(up, vp) = vu(X0) You € V), (2.10)
where the bilinear form

Anun,vp) =Y / AupAvy dx — (/{{Auh}} [Vorllds + /{{Avh}} [[Vuh]]ds>

KeT, ee&y

+2 /ﬁmequﬂds @.11)

eeé’h

Here, the penalty parameter 8 needs to be large enough to ensure the stability of the C°
interior penalty method. Define the energy norm by

vl = an (v, v) + Z IIIIVU]IIILz(e), Vv e HX(Q, ), (2.12)

eeé‘h

an(u,v) ==Y / AuAv dx.

KeT,

where

It can be observed that ||| - ||| defines a norm on the space HX(Q,Tp).
Recall that a(-, -) is defined in (2.1), we can observe that

ap(v,v) = a(,v) = Cv[3, Vv € H3 (). (2.13)

(€)’
Then the following inequalities hold.

Lemma 2.4 (Continuity and coercivity [35]) For sufficiently large B, there exists positive
constants Cg and Cy, for the bilinear form (2.11), such that

|An G, vi)| < Colllunlll * [[oalll. Vun, v € V%, (2.14)
An(p,vn) = Cslllvall?, Yop € V. (2.15)

By Lemma 2.4 and the Lax—Milgram Theorem, the discretized problem (2.10) admits a
unique solution.
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2.3 A Priori Error Estimate

Given the regularity outlined in Lemma 2.3, we review the following results, which are
extensively used in the a priori and a posteriori error estimates.

Lemma 2.5 (Trace inequality [11]) For any element K € Tj, and e C 0K, it follows
—-1/2 1
||U||L2(e) < Chg (||U||L2(1() + hK”VU”LZ(K))y Yv e H (K),
—1/2
0nvll2¢) < Chyg / (IVVll 2y + Rk IVl 2k)) . Y € HA(K).

Lemma 2.6 (Inverse inequality [11]) For any element K € T,, e C 0K, and v € P, (K), it
follows

Il 2y < Chg vl 2k
18nvll 2y < Chg 21Vl 2k,
IV7vll2) < Chg Il 2k). YO < j <m.
Lemma 2.7 (Interpolation error estimate [7, 18]) Let I1j, : H1(2) — V" be the standard

Lagrange nodal interpolation operator. Then, for any element K € T, e C 0K, and any
function v € HY(K), the following estimates hold:

v = ol grxy < Ch vl ma k). for0<l<gq, q=>0,
s—1/2
v = Tl 2y < Ch vl e, for g > 1,
s—3/2
IV = )l 2y < Ch vl e, for g > 2,

where s = min{m + 1, q}, and C is a positive constants, which depends only on the shape
regularity of the mesh, but is independent of hx and v.

Lemma 2.8 (Céa’s Lemma) [8, Lemma 8] Let u and uy, be the solutions of (1.1) and (2.10),
respectively. Then the following estimate holds:

llu —uplll < C inf [|lu—v]||. (2.16)
veV"

h,0

Therefore, we have the following result.

Lemma 2.9 (A priori error estimate) Let 7j, be the quasi-uniform triangulation with mesh
size h, and let u € HOZ(Q) be the solution of equation (1.1), and uy, be the approximation
solution of (2.10). Then,

1/2

2 min{l—e, 2
N —uplll < € { Y0 K™ s covan gy | s (2.17)
KeT,

where o < ag with ag given in (2.4).

Proof Let Iyu € V), denote the standard Lagrange nodal interpolation of u. By the the
Lemma 2.8 and the definition of the energy norm, this yields

Hlu —uplll < Clllu — Hpull]
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172

=C| > lu- Hhu|H2(K)+Z V@ =Tl | - @18)
KeT, ee&y e

Recalling the regularity estimate in Lemma 2.3 and applying the interpolation estimates from
Lemma 2.7, the following estimates hold:

2 2 2min{l—e,a} 2
|M - H/’lu|H2(K) = ||M - Hhu”HZ(K) =< ChK ||u||Hmin(3—e,2+a)(K)v

2m1n{2 —€, 2+oz

IV @ =T 72, < Chythy et mings—e.2a0

2min{l—e,a}
< Ch ”u”Hmm(S €, 2+o()(]()

Summing over all elements and edges completes the proof of the estimate (2.17). O

3 Residual-Based a Posteriori Error Estimators

To improve the convergence rate of the C® interior penalty method in Lemma 2.9, we propose
an adaptive C? interior penalty method in this section. Specifically, we introduce two residual-
type a posteriori error estimators for problem (1.1). Based on the derived error estimators
and a bisection mesh refinement method, we then develop an adaptive C° interior penalty
algorithm.

3.1 A Posteriori Error Estimation Based on Primal Problem

The first type of error estimator is obtained in a straightforward manner based on the prob-
lem (1.1). Theoretically, we establish upper and lower bounds to ensure the reliability and
efficiency of the proposed estimator.

Letuy, € Vh o be the approximation solution obtained by the C O interior penalty method
(2.10) for problem (1.1). Foreach K € 7, Ek represents the set of three edges of element K .
Denote the set of all mesh nodes of the triangulation 7;, by N. The number of nodes is equal
to the degrees of freedom. For example, A includes vertices and edge center points for the
quadratic polynomial approximation. We propose the following residual-based a posteriori
error estimator on K € 7, involving the location of the Dirac point in the mesh

1/2
2 =2 : —
nk Gun) = (hKO—I—nKO) , if K = Kpandxg ¢ NV, 3.1
Nk, otherwise,
where
1/2
k) =|nmx+ D wm.t Y. wm.t > am,| . (32
eeExNEy eeExNEY eeExNE;
witha, = 1 fore € Ep, 2, = 1/2 fore € &7, and
32 A2 _ 12
.k = hgllA%up ||L2(K)’ n2.c = Bhe |||Ivuh]]||L2(e)7 (3.3)
1/2 3/2
M3.e = he > ITAWAT 2 Nae = h 2NV Aundll20)- (3.4)
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Then the corresponding global error estimator is given by
1/2

nwn) = Y nk@n) | . (3.5)

KeTy

If x¢ is not a vertex of the triangulation, an additional term &g, appears in the indicators
corresponding to the triangle xo € K.

3.1.1 Upper Bound

To derive the reliability bound of a posteriori error estimator, we introduce the linear operator
Ej, mapping elements in V;"; onto a C! conforming macro-elements space SZ’+2 of degree
m + 2. For the detailed definition of this C! conforming macro-elements, refer to [17, 24].
For the convenience of readers, we provide a brief review of the high-order versions of the
classical Hsieh-Clough-Tocher macro-element.

Definition 3.1 ([24]) Let element K € 7. For m > 2, a macro-element of degree m + 2 is
a nodal finite element (K, Fm+2, ]Vm+2). Here, the element K consists of subtriangles K;,
i =1,2,3 satisfying K = Ul.3:  Ki as shown in Figure 3(b). The local element space 13,,14_2
on K is defined by

Puto :={ve C(K): vlk € Puia(K), i =1,2,3). (3.6)
The degrees of freedom ﬁm+2 on K consist of all the following values:

The value and the first (partial) derivatives at the vertices of K ;

The value at m — 1 distinct points in the interior of each exterior edge of K;

The normal derivative at m distinct points in the interior of each exterior edge of K ;

The value and the first (partial) derivatives at the common vertex of all K;, where i =

1,2,3;

e The value and the normal derivative at m — 2 distinct points in the interior of each edge
of the K;, where i = 1, 2, 3, that is not an edge of K;

e The value at (m — 2)(m — 3)/2 distinct points in the interior of each K; chosen so that,

if a polynomial of degree m — 4 vanishes at those points, then it vanishes identically.

For example, the Ps macro-elementisa C' extension of the C° Lagrange element that consists
of P3 polynomials. These elements are illustrated in Figure 3, where we use the solid dot
(e) to denote the value of the shape functions, the circle () to denote the value of all the
first (partial) derivatives of the shape functions, and the arrow (1) to denote the value of the
normal derivatives.

Denote by w, the set of elements containing a node v € N, and let fw, denote the number
of elements in w,. We construct Ej, by averaging the nodal function values as follows:

3 Ny(uplg), if v ¢ 9

v

Ny(Ep(up)) = { " Keay (3.7)
0, if v € 3Q.

Here, N, represents either the nodal value of a shape function, its first partial derivatives, or
its normal derivative at v, where v is any node in the macro-elements space SZHZ.
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(a) (b)

Fig.3 (a) A P3 Lagrange element. (b) A ﬁ5 c! conforming macro element

Lemma 3.1 /24, Lemma 2.9] Let uj, € V}:’fO be the solution of (2.10). Then there exists an
operator Ep = V)'ly — SZH'Z N HOZ(Q) that satisfies the following bound

D lun = EnCun)jpey < € 30 b MIVunllfag)e =012 3
KeTy ee&y

Remark 3.2 Different from the estimate in [24], the right-hand side of (3.8) here does not

include the term Zee&, hi_% ||[[uh]]||iz(e). This is because V,f’fo C CY%), then the jump of

uj, across any edge e € &y is zero, and up|, = 0 fore € Ep.

To introduce the weak continuity, we introduce the following biharmonic problem
Au=f inQ, u=0 and du=0 ondS, (3.9)
where f € L2(). For (3.9), the following results hold.

Lemma3.3 [8, 16, 20, 34] For any f € L*(Q), the solution u € HZ () of (3.9) can be
decomposed into the sum of a singular part and a regular part:

Uu=ug+ug, 4.4
where ug € H*(Q) N HOZ(Q), and us has the following properties:

(i) us € H} ().

(i) AZug e C®(Q).
(iii) ug is C*° up to the boundary of 2, except at the vertices of Q.
@iv) Let Q1, ..., Q be the vertices of Q2. Then

1 —_
|0}, 05, us| = O ™) fory,o=0,1,2,...
in a neighborhood of Q i, where (r;, 6;) are the polar coordinates at Q ; and o < w.
j j»Yj J

Lemma3.4 Letu € HOZ(Q) be the solution of the problem (1.1). Then it can be decomposed
as

U=ugr-+us-+up, (3.10)
where the properties of ug and ug are specified in Lemma 3.3, and u p satifies the following

properties:
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(i) up € HZ(Q) N H>(Q) for any € > 0.
(i) A’up = 8y, in the neighborhood of Xo.
(iii) up is C* up to the boundary of Q, except at Xo.

Proof We partition the domain 2 into three subregions:

R/2 R/2
Q =97 @=of\l’ o=a\f

X0’

where Q;O denotes the ball of radius r centered at X, and we assume Qfo C . In addition,
we introduce a smooth cut-off function n(xg; r) € C*°(L2) satisfying

nxe;r)=1 forO0 <r <R/2, and n(x¢;r) =0 forr > R.

Define the function

x — xo|?
up = n(xp; [x — xo|) ———In|x — x| (3.11)
8w
Thenup =0, 0qup = 0 on 9€2, and
8xo> if x € Q,
Aup={A%up e CC(),  ifxe, 3.12)
0, if x € Q3.
Let u be the solution to (3.9) with
0, ifx e Ql,
f=1-Aup, ifx € Q, (3.13)
0, if x € Q3.

It can be verified that f € L2(2), and that the function u = u; + u p is the solution to (1.1).
By Lemma 3.3, u; admits the decomposition u; = ug + u g, and thus the full decomposition
(3.10) holds. O

Then we have the following result.

Lemma 3.5 (Weak continuity) Let u be the solution of the problem (1.1). Then for any interior
edges e € &,

/[[u]] .qds =0,  Vqel[L*e)]* (3.14)
/[[W]] vds =0,  VveL’(e), (3.15)
/[[Au]] -qds =0, Vqe[L*e)], (3.16)
f[VAu]] vds =0, VuveL%e). (3.17)

Proof Given that u € H™"3~¢2t)(Q) N HZ(Q), (3.14) and (3.15) follow immediately.
By Lemma 3.4, the solution u to the problem (1.1) can be decomposed as (3.10). By the
properties of us and u p in (3.10), it follows that (3.16) and (3.17) are equivalent to

/[[AMR]] .qds =0, Vqe L)), (3.18)
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/[[VAMR]] vds =0, Vv € L%(e). (3.19)

Sinceug € H*(Q), the equalities (3.18) and (3.19) hold [39], and consequently, (3.16)—(3.17)
also hold. o

Next, we are ready to present one of the main results.

Theorem 3.6 (Reliability) Let u be the solution of (1.1) and u), € Vh"fo be the solution of
(2.10). Then the residual-based a posteriori error estimator n satisfies the global bound

[lu —wupll] = Cn. (3.20)
Proof Recall the energy norm ||| - ||| in (2.12). It follows
B
e =l = 32 = wnliegy + 3 =NV @ = )7z
KeTy, ee&y

According to the Lemma 3.5, it is clearly that

IV @ = w72, = / [Vul® — 2[VullVusl + [Vunl* ds

fe [Vur P ds = [0Vl .

then
> hﬁu[[vw —u o = ) hﬁn[[wh]]uiz(e) <CYy n.

ec&, ¢ e€y, ee&
Let x = Epuy, € Hg(Q), the triangle inequality gives
KeT), KeT), KeT),
By Lemma 3.1, it holds
Z |X - uh'iﬂ(]() =< C Z n%,e'
KeTy ec&y

To this end, it suffices to show that the second term on the right-hand side of (3.21) satisfies

1/2
2
KeT),
By (2.13) and duality argument,
1/2
a(u — X ¢)

Yolu=xlpg | =l—xlpg = swp — (3.23)
KeT) peHZ()\{0} #1120

Denote the continuous interpolation polynomial of ¢ by ¢; = IT¢ € V}". By (2.13), (2.1)
and (2.10), '

a(u - X ¢) = a(l/t, ¢) +ah(u/’lﬂ ¢) _a(X7 ¢) —ah(l/{h, ¢)
=a(u, ¢)+ap(up — x, ¢) — an(up, ¢)
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= (8xp> @) + an(un — x, ®) — an(un, ¢1) — an(upn, ¢ — ¢r)
= (8x> ®) — An(un, @) + an(un — x, @) + Ap(up, ¢r)
—ap(up, ¢r) — an(up, ¢ — ér)
= (8xp, @ — &1) + an(un — x, ) + Apun, ¢1) — an(un, ¢1)
—ap(up, ¢ — ¢1). (3.24)
To estimate the first term on the right-hand side of (3.24), we consider the following three
possibilities based on the different locations of xg. Recall that A/ is the set of all mesh nodes

of the triangulation.
(1) If xg € N, the values of ¢; and ¢ are equal at the node xg, i.e., ¢ (Xg) = ¢;(Xp), then

(8xg, @ — b1} = P (X0) — pr(x0) = 0. (3.25)
(2) If xo ¢ N, but it is located inside one element Ky € 75, it follows
(Ox0> @ — Pn) < P — DrllLo(ky) < Chioldlm2ky) < Chikoldlm2(q)- (3.26)
(3) If xo ¢ N, but it belongs to an internal edge e, then
(8xgs @ — @1) < N — PrllLo(w,) < Chioldlp2(w,) < Chkldlp2(q)- (3.27)
By the Cauchy-Schwarz inequality and Lemma 3.1, the second term in (3.24) follows
172 1/2
an(un = x:0) < | D lun—xlipgy | 10l =C D me| bl
KeT, e€&y
(3.28)

According to the definition of Ay (-, -) and ay (-, -), it is clear that

Anun, 1) — anCun, ¢1) =— ) /{{Auh}} IVerlids — > [ IVunl {Ad} ds

ec& U¢ ec&p V¢

Yy hﬁ;/e[[wh]] [Vl ds.

ee&y

Recall that ¢ € Hg(Q), ¢1 € V;"y. Then ¢ — ¢ is continuous, and (¢ — ¢;)|. = O for any
e € Ep. By Lemma 3.5, it holds fJIV(b]]u ds =0, Vv € L2(e) for any e € &;. Therefore,

> /M V(Aup) - n(g—¢rds =y /[[V(Auh)w — ¢1)ds,

KeT, ec&r Ve

which together with the integration by parts, and (2.9) yields

—an(un, ¢ —pr)=— /KAuhA(¢ — ¢ dx

KeTy,
=y (/ vmuh)-w«p—«m)dx—/ AuhV(¢—¢1>-nds)
KeTh K
== 2 (/ Azuh<¢—¢1>dx+/ V(Aup) -n(¢ — ¢r) ds
KeT, 9K
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—/ AupV($ — b1) -nds)
K

== ¥ [ 2@ -enax+ Y [19u@ - o0 ds
K

KeT, eely ¢
-3 /ﬂAuhn V@ —nhds + Y [ (Aur}IVTds.
8651 ¢ eESh ¢

The sum of the two qualities above gives
(Anup, 1) — anup, ¢1)) — an(un, ¢ — ¢r)
=— f Aup(¢— g dx+ Y [IV(Au)l(@ — 1) ds
K

KeT, ecEr v¢

=% [1awd- (v - oonas - ¥ [1vunasnnas
ec&r Ve ec&y V¢

+ 2 2 [1vuiivenes.
ee&y ¢ Je

Then, we estimate the five terms on the right hand side of the above equation one by one.
Using the Cauchy-Schwarz inequality and Lemma 2.7 gives

3 fK Ny — ¢ dx < 3 182wl 2 6 — é1ll2k)

KeT, KeT,
<C Y WA 2unl 2|0k,
KeT,
12
=C Z 77%,1( 161520 (3.29)
KeTy,

12
>0 [o-on? ds)

8651

12
> v - o < (Z 02 [P ds) (

6651 ¢ 6651 ¢
12
=C (Z '7421,,3) |¢|H2(Q)’ (3.30)

8651

and

172
3wt /[[v¢,]]2 ds)

eeSh

12
3 hﬁ [Vup 1Vl ds < (Z / ﬁzhe_l[[vuh]]zds) (

665;, eeEh ¢

12 12
- (Z /52h;lﬂvuh]]2ds) (Z h;lft[w—wnzds)

eeEh € eeé'h

12
<C (Z 7)%’6) |¢‘H2(Q)' (3.3D

eeé’h
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Forany e = dKT N 3K~ € &, applying Lemma 2.7 and Lemma 2.6 gives
1
V(P — ¢ B120) < 5 (IV@ — DDkt 120) + V(D — D k-1 12(0))
2
< C(IV@ = dDl2@k,) +IV® — ¢Dl 2k ))
12 1/2
<C <h](/+|¢|H2(K+) + h,(/—|¢|l-12(1<*)) ’
1
2
~1/2 —-1/2
C (hK+/ I AGr 120k + +hK_/ ||A¢1||Lz<1<—>)
—1 2
< c[ P (18@1 = D)llas + 1812 x+)
1 2
(1861 = D)2, + 1801 20k0) ]
< C( K+ |¢|H2(K+) +hK— |¢|H2(K ))

Recall that 4, is equivalent to s g+ and & g - . Summing up over all interior edges e € £r leads
to

(AP M 2y < 5 (1AG1Ik+ 1120y + 121 K-l 12(c))

IA

2
> TG = 90Wy = € D ke (18l + 1ok )

eck; eefy
<C Z h;l (hK+|¢|%.12(K+) + hK*kp'iﬂ(K‘))
eey

2
—1/2 —1/2
> hellAdN 2 = € D he (eIl + g P 10lk) )

eely eely

=C Y he (W 6Bp ey + g 1080k )

(3651
Similarly, for any e € K N Ep, applying Lemma 2.7 and Lemma 2.6 gives

D helliAG BT, < Clol )

6653

Then, by using the Cauchy-Schwarz inequality, it holds

1/2 1/2
> fﬂAuh]] V(@ —¢nhds < (Z f[[Auhlﬂdv) (Zh 1/{{V<¢ ¢1>}}2ds)

6651 EESI EESI

1/2
=C (Z n%,e) 191520 (3.32)
eely

1/2 12

> [1vmneasmas < ( Xt [1vertas | (3 ne [1a? e

ect) ec&y e€&y
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12
=C Z M. |12 (3.33)
ee&y
The estimates (3.25) - (3.33) imply that (3.22) holds. ]

3.1.2 Local Lower Bound

To establish the efficiency of the a posteriori error estimator, we introduce four types “bubble”
functions, along with several key properties that will be frequently used in the error analysis.
Let K denote a reference element, which can be either triangular or rectangular.

o If K isatrian gle with the bAarycentric coordinates A, A and A3, the standard correspond-
ing “bubble” function in K is given by

bp =2Th1A223. (3.34)

For a triangle K € 7, we define Fk : K — K as an affine element mapping.
e If K is a rectangle with the corresponding coordinates x and y, we denote the “bubble”
function in K by

bp=(1—x)(1—y). (3.35)

For each internal edge ¢ € &, let T C w, be the largest rhombus contained in w, that
has e as one of its diagonals. We define Fr : K — T as an affine element mapping.

Following the construction in [22], the bubble functions on K € 7; and T C w, are given
by
bK:kaFK, bT:b[QOFTs

where they were used in the a posteriori error analysis for fourth-order elliptic problems with
source function in L2(£2). However, their construction does not account for the presence of
singular source terms, such as Dirac measures. In particular, the values of bubble functions at
the singularity point X¢ generally do not equal to 0, which introduces additional challenges
in the course of our error analysis.

To address this, we further modify the standard “bubble” functions bg and br to handle
two specific cases involving the singularity point xg. The new “bubble” functions retain
desirable properties such as localization and norm equivalence while additionally ensuring
that they vanish at x¢. This modification is crucial for the subsequent proof of the lower bound
of the a posteriori error estimator, as special care is needed to handle the behavior near xp.
Furthermore, we introduce auxiliary bubble functions both on the edges and at the singular
point Xo, and establish key properties essential for the analysis.

(1) ““Bubble” function on a triangle. The “bubble” function bx on any K € 7}, is defined

as
bp o Fk, if K € 7\ Ko,
= ol o Py, ifK = Koo (3:36)
Ko
Lemma 3.7 For the element “bubble" function b on a triangle K € Ty, it holds
bk (x9) =0, bg(x) =0, Vxe Q\K. (3.37)
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Moreover; for Vv € P, (K), it follows
Il 2k) < Clibkvll2kys 18R VI2k) < CllvlL2ek)- (3.38)

(2) “Bubble” function on a rhombus. For the largest rhombus 7 contained in w,, the
“bubble” function b7 on T is defined by

b kaFT, ifX()¢T, 3.39
= %bkoFT, ifX()GT, ( )
where 7 is the closure of T.

Lemma 3.8 For the “bubble" function bt in rhombus T, it holds
by € CH(Q) N HZ (),  br(xg) =0, (b3} =0 on &e, (3.40)
[b31=0 and [V} ={Vhi)} - n=0 on &. (3.41)

Moreover, for Vv € P, (K), it follows
3/2 1/2

||U||L2(e) = C||br/ U||L2(e), ||Ub3T||L2(wl, =< he/ ||U||L2(e)- (3.42)

(3) “Bubble” function on a edge. Let b; be an affine function that satisfies b;|, = 0 and
(Vb -n)|, = h;l, where n is the unit normal to the edge e. Using the element “bubble"
function definition given above, we define an edge “bubble" function as

be = bib3.. (3.43)

Lemma 3.9 For the edge “bubble" function b, in (3.43), it holds

be € CH(Q) N HZ (), be(x0) = 0, be =0 in Q\T, (3.44)
bl =0 and [Vbel={b}) =0 on &, (3.45)
{Vbe} -m)e = h, b}, (VD) =0 on &p\e, (3.46)

Moreover, for Yv € P, (K), it follows
1/2
1bevll 2w,y < Ch* 0]l L2¢e)- (3.47)

(5) ““Bubble” function at a point. Denote wg by the collection of elements in 7;, that share
a common edge or vertex with K. Specially, we define the set

wk, ={K € T : KN Ko # 9}, (3.48)

and the distance of x¢ to the boundary of wg, is defined by d := dist(xp, dwk,). We
define the smooth “bubble” function associated with the point X by convolution of the
characteristic function of the set {x € Q : |x — xo| < d/4} satisfying

0<by,(x) =1, Vxe€Q, |bx®lmoowg, <Cd™™, m=12,
byy(x) =1, VXeQ:[x—x¢| < 7
3d

bxy(x) =0, VxeQ:|x—xo|> T
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Lemma 3.10 Assume that Xo € K. For the “bubble” function bx,, it holds,
|bxo ()| () < Chig", m=0,1,2. (3:49)
by M)l 120 < ChZ, e € daog,. (3.50)
Proof The proof of (3.49) follow form Lemma 3.2 [1]. For (3.50), the definition of | - || L2(e)

yields
1/2 1/2 5
bxy ) 12(0) = ( / b,%O(s)ds) <C ( / ds> =cn/>.

With these preparations in place, we are now ready to present our next main result.

Theorem 3.11 (Efficiency) For the local indicator ng defined in (3.1), there exists a positive
constant C independent of the mesh size satisfying

nk = Clllu — up|llog - (3.51)

Proof We first prove the estimate (3.51) on the element K whose closure contains Xo, but
Xo ¢ N. By the definition of the energy norm, it holds

B
M —unlleg, = D |l —unlfpg) + D En[{vw—uhn]niz(e) :

KEa)KO 6651(

the estimation (3.51) is equivalent to

1/2

2 2 2 2
Wy + Mg+ D demiet+ > am,| =Cllu—uplllog,- (352)
e€Ek,NEr e€Ek,NEr

Then, we prove (3.52) in four steps.
(i) To prove ni1,x, = h%(0||A2”h”L2(KO) < C|lju — Mh|||wK0- For Vv € V,;’fo, using
integration by part gives

U(XO)—/ (Azuh)vdx=/ A% — up)vdx
Ko Ko

:—/ VA(u—uh)-VvdX—i—/ VA — up) -nvds
Ko Ko
:/ A(u—uh)AvdX—/ A(u—uh)n-Vvds+/ VA — up) -nvds.
Ko 9Ko Ko
(3.53)

We set v|x, = (A%u;)by, in (3.53), where v € Hg () N Hg (Ko) and satisfies v = 0 in
Q\ Ko. Additionally, v is a polynomial on K with bk, (Xp) = 0. Then, for Ve € 9Ky, it holds
that v(xp) = v|. = Vv|, = 0. Consequently, (3.53) yields

/ Au—up)Avdx = —/ A%upvdx.
Ko Ko

According to Lemma 3.7, it holds

Il 2k < CIA%URN L2 (ky)-
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Then, by Cauchy-Schwarz inequality and Lemma 2.6,

f (A?up)vdx < A — um g2k Va2 (k) < Chy |“ - ”h|H2(wK0)||U||L2(K0)
Ko
< Ch;zlu — Mh|H2(wKO)||A2Mh I L2(kq)- (3.54)

Since A2y, is a piecewise polynomial over Ky, according to (3.38) and (3.54), it holds

1A% un 72k, < / (A%up)’bg, dx = C | (A%up)vdx
Ko
< Chigolu = unl 2 gy | A%nll L2k
which implies
R 8%unll 2 ky) < Clit = uh] g2y < ClHIe = uth]llag, - (3.55)
(i) To prove Y ce, e, @eme = Teeey he’ IAuRDI L2 < Clllu — wlllug, - For

Ve € Ek, NEr, denoteby F, ={e € 0K : K € a)g}. By (2.9), the summation of (3.53) over
all elements K € o gives

v(Xg) — Z / Azuhvdx—/ A(u —up)Avdx + Z /[[v]] UVA@W@ —up)lds

eeF.NES
+> /{v}}IIVA(u —up)]ds
ecF,
=3 [1vetaw - wyds
ecF, "¢
> [uven-iaw—unds (3.56)
ecF.NE

We take v = ¢b, in (3.56), where ¢ is continuous on e € &, and ¢ is a constant function in
the normal direction to e (i.e., (V¢ - n)|, = 0). By v(xg) = 0, Lemma 3.5, and Lemma 3.9,
the equality (3.56) reduces to

- /0 Alupvdx = f{{vU}} [Auplds + /0 A(u — up)Av dx.

Wy

By using Cauchy-Schwarz inequality and Lemma 2.6, the equation above gives
/IIAMh]] ~{Vullds < ||A2uh||L2(w9)||v||L2(w8) +lu —unlg20) 1AV 2200
e

<cC (h§||A2uh 2y + lu — u,,|H2(w3)) h 2l (BST)

We extend ([Auy]l - n)|, from edge e to a)g by taking constants along the normal on e. The
resulting extension E ([[Auy,]-n) is a piecewise polynomial in w,. Setting ¢ = E([Aup]-n),
and using (3.42), (3.46) and (3.47) yield

MawdEsg, < € [KauIPb ds = Che [18m1- (Vo) s,

1/2

Ivll2we) = Ch,' I|¢||L2(e) = Ch' " [ AuplllL2(c)- (3.58)
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By (3.55), (3.57)-(3.58), it follows
B, < ChY> / [Aus] - (v} ds
e

—1/2
< Chy " (B2 2y + 1 = ]2y ) 101 260y
= Clllu — uplll o TAuR L2
which gives
1/2
he' > 1AunT 20y < Cllle — unll0. (3.59)
Summing up (3.59) over all edges e € £k, N & yields

1/2
S nPI0AunTl 20 < Clllin = ], - (3.60)
6651(0051

3/2
(i) To prove Y, e, @ele = Leeey, e MV Aunll 2 < Cllu = tlllg, - We
takev = <I>b3T in (3.56), where @ is continuousone € &, and (V®-n)|, = 0. By b% (x0) =0,
Lemma 3.5, and Lemma 3.8, (3.56) can be written as

e

/ Azuhv dx —I—/ A —up)Avdx = /[[VAuh]]{{v}} ds. 3.61)
? w?
By (3.61), Cauchy-Schwarz inequality, and Lemma 2.6,
/[[VAuh]]{{v}} ds <C <|u — unl o) + B2 Au |IL2<wg)) n2 ol (B62)
e

We extend ([VAul)|. to a function E([[VAuyll), defined over a)g, by taking it to be con-
stants along lines normal to e. Setting ® = E([V Auy]) and using (3.42) yield

Iollz2g0py < Che/? 1@l 1200y = Che IV Aunlll 2,
I 80015, = € (1980065 ds = € [19Au 10} 05,
; ;
< Ch ™ (ju = unl ooy + h21A%unl 20 ) I Aupll 2y (363)
Form (3.55) and (3.62)-(3.63),
BV Al 20y = € (B21A%00 20y + I = unl oty ) = Clle = unlll g (3.64)
Summing up (3.64) over all edges e € £k, N & gives

3/2
S IV AT 20 = Cllle = walllog, - (3.65)
CEEKOOSI

(iv) To prove hg, < C||lu —up|| IwKO. By the weak formulation of (1.1) and Lemma 3.10,
it can be observed

1= <8X()7 on) <

/A(u—uh)AbXO dx—l—/ Aup Aby, dx
Q Q

< |M — uh'Hz(w](O)|bX0|H2(a)K0) + ’/;Z AMhAbXO dX
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< Rl = n g2 )+ . (3.66)

(wKO

/ Aup Aby, dx
K

@Ko

Let /1 = {e € 0K N &+ K € wg,}. By integration by parts, Cauchy-Schwarz inequality,
Lemma 3.10 and Lemma 2.6,

/ AupAbyydx = " /Azuhbxodx—/ V(Auh)~nbxods+/ AupVby, - nds
WK, K K

KEa)KO oK

=2 | A
= upbsy dx — > ([ IV(Aup)l sy ds — [[Aupll- Vb, ds

Kewk, K ecF; ¢ ¢
< 2
< 1A%k ] 120 15%0 | 200 + D TV BT 220 1w 1220y

eeFy
+ D AR 20 Vsl L2¢e)
eeFr

_ 3/2 1/2
<Chigh | Wy 18%unll 2o )+ Y B PNV Qa2+ Y he*ITAULT 2¢e)

eeFy eeFy
(3.67)
Inserting (3.67) into (3.66) yields
-1 2 1A2
1 < Chy, (|u — ”h|H2(wK0) + hixllA uh||L2(wK0)
3/2 2
+ 3 PV w2 + Y ke ||[[Auh]]||Lz(e)), (3.68)
66,7:[ ee]—';
which, together with (3.55), (3.60), and (3.65), implies
hgy = Clllu — unlllog, - (3.69)

The estimate (3.52) follows from (3.55), (3.60), (3.65), and (3.69).
If xg € NV, for VK € 7y, the term hg vanishes in ng and the estimation (3.52) reduces to

12
me+ Y. wem.+ Y, an,| =Cllu-ulllog.  (3.70)
eeExNEY eefgNEr
Then, the estimate (3.70) is given directly by (3.55), (3.60) and (3.65). O

3.2 A Posteriori Error Estimation Based on Regularized Problem

Inspired by the technique of second-order elliptic equations with a Dirac delta source term,
as discussed in [25], where the L? projection of the Dirac delta function is used to produce a
regular solution, allowing adaptive procedures based on standard a posteriori error estimators
to work efficiently. This regularization approach using projection techniques can also be
applied for the problem (1.1).

Let 7;, be a triangulation of 2 such that |Inkg| ~ |Inhk|, for VK € 7j, where hx =
diamK and h = maxgc7;, hk. Given Ko € 7; and X € Ko, the Dirac delta function can be
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approximated by &, defined as

0, in Q\fo,
o = .
8[(09 mn K()v

where g, € P, (Ko) satisfying
/ Skovdx = v(Xp), Yv € Py(Kop).
Ko
Therefore, it holds

/ Spvdx = v(xp), Yve V).
Q

Moreover, it follows [25, 36] that
1881l 200y = 1881l 2(kg) < Chg,- (3.71)

Recall that for any v € HOl (£2), the nodal interpolation I, v € V', satisfies the interpolation
error
v — Tavll 2 kg) < Cho IVl k) < Chko 01 0y-

Therefore,
5 _ Jio Onvdx _ iy 800 = Tpv)dx + [ 8411 vdx
I8nll -1y =  sup = sup
vert@o) Plai@  vemt@vo) vl 1)
- 18r 112 (ko) v — Tnvll 22 (k) + Trv(X0)
veH @\(0) vl g1 (o)
ChK fSh 2 v 1 + Hhv L°(Q
< olldnllL2ckoy Il 1y + | Iz <0+ |nADk,
ve HL(Q)\{0} vl g1 ()

(3.72)
where we have used (3.71) and
1 1
IMpvllec@) < CA 4+ [Ink)2[[Huv] g1 < C(+ [Inh) 2 [v] g1 g)-

Here, the first inequality follows from discrete Sobolev inequality [9, Lemma 4.9.2], and the
second from Lemma 2.7. Similar to Lemma 2.1, for any € > 0, it follows

61l -1- (@) = C., (3.73)
where C is a constant independent of /1 k,,. Let us consider the ensuing auxiliary problem:
A’T=6, inQ, =0 and @ =0 ond<Q. (3.74)
The CY interior penalty method for problem (3.74) is to find u;, € V,:’fo such that
Ap(p, vp) = v(x) = fgahuh dx Yu, € V). (3.75)

The well-posedness of the scheme (3.75) follows from the Lax-Milgram theorem. Let # and
u be exact solutions for the original problem (1.1) and auxiliary problem (3.74), respectively.
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Letuy, be corresponding numerical solutions of (3.75). The error estimate can be decomposed
into two parts using the triangular inequality

e —uplll < |u —ulp2q) + ||w —unlll- (3.76)

The first term represents the regularization error, while the second term represents the dis-
cretization error. We estimate the total error by summing the independent contributions from
each part.

The standard regularity estimate, together with the estimate (3.71) applied to (3.74),
implies that i € H™"3:2+e}(Q) and,

||| gming,2+e) < ||Sp || grmin{—1,~2+a} - (3.77)

where a < o and «g is given in (2.4). Then the discretization error can be estimated as [8,
36]

|| —ap||| < DhmintLed, (3.78)

where
D— Cl+ kD2, ifa=1,
e, ifao <1,

for some constant C independent of /.
Referring to [36], the following projection error bound holds

8%y — Snll (@) < cht, l<r<m, (3.79)
where m > 2 is the degree of the polynomial. Using the elliptic regularity theory and (3.79)
yield
i — Tl 20y < I8 — Ball 20y < Ch. (3.80)
Based on (3.76), (3.78), and (3.80), we have the following result.

Lemma 3.12 Let Tj, be the quasi-uniform triangulation with mesh size h, and let u and uy,
be solutions of (1.1) and (3.75), respectively. Then the following error estimate holds

= plll g2y < Ch™"E),

where C depends on (1 + |Inh|)'/? when o = 1, and is independent of h when o < 1.

Remark 3.13 Two techniques are empolyed in the C? interior penalty method to solve prob-
lem (1.1): a direct method (2.10) and a method using the projection technique (3.75).
By comparing the error estimates of the solutions obtained with the direct method (see
Lemma 2.9) and with the projection technique (see Lemma 3.12), we observe that solutions
from both techniques exhibit the same convergence rate on quasi-uniform meshes.

Based on the projection technique, we propose the second residual-based a posteriori error
estimator for the C? interior penalty method solving problem (1.1) as
1/2

s = D @ | (3.81)

KeT),
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the local indicator £k is given by

<h2 +E2 )1/2 if K = K,
ex @y = | ko T8k) o ITE =Ko, (3.82)
¢k, if K € T\ Ko,
where
1/2
Exn) =[x+ Y, b, + Y, b, + Y, afi,| . (383)
eeExNEy eeExNEY eeExNEY

witho, = 1 fore € Ep, 2, = 1/2 fore € &7, and
— —1/2 N
1k = ho I8 — A% L2k £.0 = Bhe P IIVELDI 200,
1/2 — 3/2 —
e = b IAT I 20 Eae = 1 IV AR 120

The corresponding global upper and local lower bounds are given as follows.

Theorem 3.14 (Reliability) Let u and u be exact solutions for the original problem (1.1) and
auxiliary problem (3.74), respectively. And u, € V; is the solution of (3.75). Then the
residual-based a posteriori error estimator & satisfies the global bound

[l —unlll < C§. (3.84)
Proof By triangular inequality, the left hand side of (3.84) is bounded from above by
e = wnlll < [Mlu —ulll + [1fw — uplll.

Using the elliptic regularity bound, Lemma 3.5 and (3.80), the first term can be estimated as
follows

_ _ B _ _
W —aulll* =Y lu—ulp g+ Y —IIV@ =2, = lu—1l%q < Chk,.
(K) he (e) () 0

KeTy, ee&y
(3.85)
Similar to the proof of Theorem 3.6, to prove |||z — uy||| < C&, itis sufficient to verify that
172
a(u — x,
S - alpg | = s CEX? o (3.86)
ket gm0 Pl@

where x = Epuj € HOZ(Q). Let ¢; € V}", be the continuous interpolation polynomial of ¢.
Then,

a@-x.0)= Y [ 6n- 20 - o ax+ L, (3.87)
KeT), K
where

Ly =an(@ —x.$)+ ) [[[V(Aﬁhﬂ](d) —¢rds— ) f[[Am V(¢ —dhds

ee&y ¢ eel ¢

-3 f [Vl fApfds + Y hﬁ f Va1V, ds

ec& U ¢ ee&y
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satisfies
172

Lp=¢C Z ‘;’:22&‘ + Z ‘%_32,e + Z gf,e [l p2(0)- (3.88)

ee&y, eely eefy

By the Cauchy-Schwarz inequality and Lemma 2.7, the first term in (3.87) follows

> f (8n — %) (9 — ) dx < Y 1185 — A%unll 2l — b1l 22k

KeT, " K KeT,
1/2
<C Y hlsn — Al aoldlmg <C| D0 &k | Blurg,. (389
KeT, KeT,
which together with (3.85) and (3.88) yields the conclusion. O

Theorem 3.15 (Efficiency) For the local indicator £k defined in (3.82), there exists a positive
constant C independent of the mesh size such that

SK<{C(hko+|||u—uh|||wko), K = Ko,
" Cllu = n g K € Th\Ko.

(3.90)

Proof Let’s first show the element residual term &; ¢ = h%( 16n — A%y, 12k satisfies the
estimate (3.90). For Vv € V7, using integration by part gives

/ (8 — A%up)vdx = / (81 — 8xp)v dx +/ A% (u — up)v dx
K K K
= / (8 — 8xy)V dx—l—f A(u —up)Avdx
K K
—/ A(u—ﬁh)n-Vvds+/ VA —up)-nvds. (3.91)
IK 0K

We set v|g = (8, — A%up)b% in (3.91), where v € H3 () N H3 (K) and satisfies v = 0 in
Q\ K. Noticing that v|, = Vv|, = 0. Consequently, (3.91) yields

/ 8n — A%up)vdx = / (8 — 8xy)v dx +/ Au — up) Av dx.
K K K
By Lemma 3.7, it holds

2—
vl 2ky < Clldn — A%unllL2(k)-

We prove the first case in (3.90), i.e., K = K. By Cauchy-Schwarz inequality, Lemma 2.6
and (3.80),

On — Azﬁh)v dx < I8, — 5x0||H72(K0)||U||H2(K0) + 1A@wm— Eh)”LZ(KO)”AU”LZ(KO)
Ko

< Chi (g + 1t = Tl 2 ) 1012200 (3.92)

By (3.38) and (3.92), it holds

18h — A%@p 172, < € /K (6 = AT, dx = C [ (31— A% dx
0 0
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= Chigg (g + 10 = Tl ) 18 = A%l 121y
which implies
W, 185 — A%l 2y < C (hKO lu— ﬁh|H2(wK0)> : (3.93)

Note that (6, — dxy)|x = O for any K € 7;,\ K. Similar to the proof of the first case in
(3.90), it follows

hic 8 — A%l 2 k) < Clu = h] g2 g (3.94)

Verifying other terms in £k can refer to the proof of Theorem 3.11. O

3.3 Adaptive Finite Element Algorithm

The adaptive finite element algorithm based on the residual-based a posteriori error estimator
(3.5) or (3.81) is summarized as follows.

Algorithm 1 The adaptive finite element algorithm.

1: Input: an initial mesh 7, 0; a constant 0 < 6 < 1; the maximum number of mesh refinements 7.

2: Output: the numerical solution uJ, (resp. i},); a new refined mesh 7.
3: fori =0tondo ) ) )
Solve the discrete equation for the finite element solution u;j, (resp. uj,) on 7}/ ;

Computing the local and total error estimation n% (u;l) (resp. S;( (ﬁ;l)) and ni (”2) (resp. & i (Ez));
if i < n then . ]
Select a subset 7},’ C 7}: of marked elements to refined such that,

1/2 12
A o o, o
Z ' (uy,) > 60n' (uj), | resp. Z gl @) >0l @) | ;
KeT)! KeT)!
Refine the each element K € ﬁ,i by longest edge bisection to obtain a new mesh 'ZZ +1

end if
end for

4 Extensions

In this section, we extend our results to cover a broader class of fourth-order elliptic equations
with various boundary conditions. Specifically, we generalize the biharmonic operator A2 in
(1.1) to a more general fourth order operator £ that includes low order terms

Lu = Azu—/,LIAu—}—uzu, “4.1)

where g > 0 (for £ = 1, 2) are constants. Both residual-based a posteriori error estimators,
(3.1) and (3.82), for problem (1.1) can be extended to the new operator. We only present
the first type residual-based a posteriori error estimator for simplicity. The proofs of the
efficiency and reliability are expected to be similar to those provided in Section 3. Therefore,
we will focus solely on presenting the corresponding a posteriori error estimators and leave
their performance to be verified numerically.
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4.1 Non-Homogeneous Dirichlet Boundary Conditions

Consider the following problem:
A’u— i Au+ pou =85y + f inQ, u=g and dyu =gy onos, 4.2)

where gp and gy are given functions on the boundary 0€2, and f is a given function in the
domain Q2. We assume that g, gn, and f are sufficiently smooth. This problem is a scalar
analog of the variational problem for the strain gradient theory in elasticity and plasticity
[38] when the coefficients satisfy @y > 0 and up = 0.

In [8], a C? interior penalty method was proposed to solve the general fourth-order elliptic
equation without the Dirac delta function term Jy, . In the subsequent section, we extend and
adapt this method to handle the presence of the Dirac delta function term 8y, on the right-hand
side of equation (4.2).

We define the space V" associated with the triangulation 7, by

V= {v, e H' () NCUR) : vplx € Pu(K), m =2, VK € Tp}. 4.3)
Denote the subspace of V" by
Vile = {vn € V" unloe = Tng}, (4.4)

where Z,g € V" is a polynomial approximation function of g by the interpolation on the
boundary.
The C° interior penalty method for (4.2) is to find u;, € Vfg such that

> (/ AuhAv/,dx+;L1/ Vu;1~VUth+;L2/ o dx)—i— > ﬁ/[[wh]] [Voulds
K K K he Jo

KeTy ec&y
- 3 ([uswnivonas+ [auyivinas)
ee&y ¢ ¢
=v(xg) + Z / fvdx — Z /gN Avds + Z E/gN Vu-nds, Yu, €V, (4.5)
ket 'K ecep Ve ec€p he Je

where V' is defined as (2.7).

Unlike the C interior penalty method for problems with homogeneous Dirichlet boundary
conditions described in (2.10), the modified method (4.5) incorporates additional boundary
term. These additional terms account for the non-homogeneous nature of the boundary con-

ditions. The local error estimator on K € 7;, for C” interior penalty method (4.2) is given
by

o+ ) if K = Ko andxo ¢ V'
Nk (up) = (M +7) K= Koandxo ¢, (4.6)
K, otherwise,
where
Nk (up) = ﬁi[("' Z Ve”%,e'i‘ Z aen§7g+ Z 0‘677421,6
eeExNE; ecExNE] eeExkNEr
12
+ Y vem .t Y. vemie| (4.7)
ecExNEp ecEgNEpR
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with y, = (1 + u1h2 4+ pahHa,, a, = 1 fore € £p, a, = 1/2 fore € &y, and

Tk = hillf — 8w + o Ay, — Mzuhlliz(,(), (4.8)
—1/2
"3, = Bhe Pllgn = Vu nll}ag,, (4.9)
-3/
né,e = he / ”g - uh”iZ(e)- (4.10)

and 2, 13, and 14 . are given in (3.3)-(3.4).

4.2 Navier Boundary Conditions

We also extend the results to the fourth order equation with Navier boundary conditions,
APu— i Au+ ppu =8¢+ f inQ, u=g and Au=gp ond, (4.11)

where g and gp are given functions on the boundary d€2, and f is a given function within
the domain Q2. We also assume that g, gg, and f are sufficiently smooth. The problem
(4.11) models a simply supported plate problem [37]. When the Dirac delta function term
Jx, vanishes, [10] studied a symmetric C O interior penalty method for a fourth-order singular
perturbation elliptic problem with these types of boundary conditions in two dimensions on
polygonal domains. The C? interior penalty method for (4.11) is to find u;, € V}f’fg such that

> (/ AuhAvhdx-i-ul/ th-thderm/ uhvhdx>+ > hE/[[Wh]] [V, T ds
K K e Je

KeT, K ecly
- Z (/{{Auh}} IIVvh]]ds-i-/{{Avh}} [[VMh]]dS)
6681 ¢ ¢
=v(xg) + Z / fvdx+ Z /gB Vv-nds. Vo, € VK‘O, 4.12)
ke, 'K ecEp ¢

where V" is defined as (2.7). The local error estimator for the C O interior penalty method
(4.12) is given by

12
2 2 : _
) (W%, +¢2,) . K =Koandxo ¢ N, 1)
Ck, otherwise,
where
k)= |Tix+ D veMet D li.+ Y., ani,
eeExNEY eeExNEY eeExNEY
1/2
D et ) veleo| (4.14)
ecExNER eeExNEp

the element residual 771 x and the edge residuals 72 ¢, 73 .¢, N4.¢, 6. are defined as (4.7). The
boundary residual term ¢s . is defined by

1/2
630 =h*llgn — Aunll}zg,- @.15)
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4.3 Homogeneous Neumann Boundary Conditions

For fourth-order elliptic equations with homogeneous Neumann boundary conditions, we
consider the following model

A% — iy Au+ pou =8y, — 8y, inQ, dqu=0 and du(Au) =0 ondQ. (4.16)

where xg, X represent two distinct points strictly contained in the domain 2. These boundary-
value problems can arise in the Cahn-Hilliard model, which describes phase-separation
phenomena [14]. [9] proposed a quadratic C? interior penalty method for fourth-order bound-
ary value problems with similar types of boundary conditions, assuming the right-hand side
function f € L%(£2). Under these conditions, a unique solution u can be found, satisfying
u € H*(Q) fora € (0,2].

It is straightforward to validate the solvability condition:

/ By; — Oy dx = 0.
Q

To obtain a unique solution, a common approach is to impose an additional constraint

/udx:O.
Q

We define a subspace of H'(2) by
V ={v, € HY(Q) : dqvp =0, / vy dx = 0}.
Q

The finite element space X' associated with the triangulation 7 is defined as
X" ={v, € VNCUR) : vplgx € Pu(K), m =2, VK € Tp}. (4.17)

The CY interior penalty method for (4.16) is then to find u, € X hm such that

Z (/ AuhAvhdx—i—,ulf Vuh~Vvhdx—|—/L2/ uhvhdx>
K K K

KeTy

+ 2 %/eﬂwhﬂﬂwhﬂds -2 (/e{{Auh}} [[VUh]]dS-I-/e{{Avh}} [Vu ] ds)

ee&y ee&y,

=v(x1) —v(Xp), Yuvy € X)'. (4.18)

Note that the bilinear in (4.18) is identical to that in (4.5), with the exception that the finite
element space now includes only functions with a zero mean value.

Denote K| € 7;, by one element such that the singular point x; € K, where K is the
closure of K.The diameter of K is denoted by /i k,. The local error estimator for problem
(4.11) is given by

172
(W, +23,) . K =Ko andxo ¢ N,
_ 172
@) = (hk 4x3,) . K=K, andx ¢ N, (4.19)
XK » otherwise.
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Table 2 Example 5.1: Convergence rate of numerical solution in uniform meshes

P P3 Py
j 4 5 6 7 3 4 5 6 3 4 5 6

R 08 08 08 073 1.00 073 060 056 074 058 056 055

where

Xk = |Tg+ D Vet D, @l + Y. ami,|. (420
ecExNEy ecExNEr ecExNES

The definition of xx (1) is same as {x (uy,) in (4.14), except for discarding the the boundary
residual term s .

5 Numerical Examples

In this section, we present numerical test results to verify the accuracy of the C? interior
penalty method and demonstrate the robustness of the proposed residual-type a posteriori
estimators. If the exact solution u is given, the convergence rate is calculated by

j—1
lu —up, g

R = log, 5.1

J
[ —uy g2

where "‘/’; is the C? finite element solution on the mesh 7;1'/ obtained after jth refinements of
the initial triangulation ’2;10. When the exact solution is unavailable or difficult to obtain, we
instead use the following numerical convergence rate
|u;l - u;l 1|I‘12(Q) (5.2)

Jj+1 j : .
luy, = upln2 @)

Due to the lack of regularity, the C¥ interior penalty method with high-degree polynomial
approximations on quasi-uniform triangular meshes may not achieve optimal convergence
rates. To address this, we apply an adaptive C interior penalty method to improve the
convergence order.

The convergence rate of the a posteriori error estimator 1 (resp. £) for P, polynomials
with m > 2 is quasi-optimal if

77 ~ N—U.S(m—l) (resp.g ~ N—O.S(m—l))'

Here and in what follows, we abuse the notation N to represent the total number of degrees
of freedom.

Example 5.1 (L-shape domain) We consider problem (1.1) with homogeneous clamped
boundary conditions in an L-shaped domain Q = (-2, 271)2\[0, 2m) x (—2m, 0] with
a largest interior angle w = 37 /2. The Dirac point X9 = (—, 7r), then the solution show
singularities at two points (0, 0) and xo. We start with an initial mesh ’Tho as Figure 4(a).
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0.30

0.25

0.20

0.15

0.10

0.05

0.00

(a) Initial mesh (b) Solution obtained with 7 (c) Solution obtained with &

Fig.4 Example 5.1: initial mesh and adaptive numerical solution

(a) P» (b) Ps (c) Ps

Fig.5 Example 5.1: adaptive meshes generated by n

Table 2 shows the H? convergence history using the P,,-based C? interior penalty method
on quasi-uniform meshes, with m = 2, 3, 4. From the results, we observe that the conver-
gence rates are R < 1 on coarse meshes, and R =~ 0.5445 on sufficiently refined meshes.
This indicates that the singularity in the solution is primarily influenced by the reentrant
corner of the polygonal domain when w > . The results in Table 2 align with the theoretical
expectations outlined in Lemma 2.3.

We then assess the efficiency of the a posteriori error estimators. Meshes generated by n
in (3.5) and £ in (3.81) are shown Figure 5 and Figure 6, respectively. It is evident that the
error estimators effectively guide mesh refinements around the points (0, 0) and (—m, ),
where the solution shows singularities. As shown in Figure 7, the slopes for the estimators
are close to —0.5(rm — 1) when there are sufficient grid points, indicating optimal decay of the
error with respect to the number of unknowns. The contours of the corresponding numerical
solutions based on n and & are shown in Figure 4(b)-(c), they are very similar.

7

Example 5.2 (Non-homogeneous boundary) In this example, we consider a more general
biharmonic equation

Au— i Au+ pou = g + f, (5.3)

where the location of X in 7), are of three different types as shown in Case 1-3. The initial
meshes of Cases 1-3 are reported in Figure 8.

Case 1: xg = (0, 0) is a node of the triangulations.
Case 2: xp = (—ﬁ, —) belongs to an inter edge e € &;.
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(a) P2 (b) Ps (c) Py

Fig.6 Example 5.1: adaptive meshes generated by &

107
10 e e
—_F 1079 e
— Cnos \ — cnto — CN1S

(a) P, (b) Ps (c) Py

Fig.7 Example 5.1: error estimators

X0®
Xo
eXO
(a) Casel,xo = (0,0) (b) Case2,xo = (—V/7, —7) (c) Case3,xo = (V/5,V38)
Fig.8 Example 5.2: initial meshes
Case 3: xg = (\/5, +/8) is contained by one element K € 7.
We take the function
|x — xo|2 Inlx —xg| 1
F) = po——In|x —xo| — p1 [ —5— + — ), (5.4)
8 2 27
then the exact solution of equation (5.3) is given by
2
X — X
u(x) = an |x — xq]. (5.5
8

Following the definition of the fractional order Sobolev space in the beginning of Section 2,
it can be verified that the exact solution u € H3~¢() for any € > 0. We consider (5.3) with
two different boundary conditions and the parameters in (5.3) are taken as 1 = up = 1.
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Table 3 Example 5.2 Test 1: Convergence rate of numerical solution in uniform meshes.

P, P3 Py
j 4 5 6 7 3 4 5 6 2 3 4 5
Casel 099 099 1.00 1.00 1.60 1.41 .18 1.06 197 159 1.14 1.02

Case2 098 099 099 100 167 1.72 120 09 1.72 159 135 0287
Case3 098 099 099 100 168 172 133 123 193 160 132 094

Table4 Example 5.2 Test 2: Convergence rate of numerical solution in uniform meshes

P> P3 Py
] 4 5 6 7 3 4 5 6 2 3 4 5

Casel 099 099 100 100 160 141 1.18 1.06 197 159 114 1.02
Case2 098 1.00 099 100 167 172 119 095 168 157 135 0.87
Case3 099 099 09 100 171 175 133 123 194 158 132 094

Test 1. We first consider non-homogeneous campled boundary conditions. The convergence
rates of the C? interior penalty method solutions based on P>, P3 and P4 polynomials for Case
1-3 in quasi-uniform meshes are shown in Table 3. The convergence rates are approximately
R ~ 1. While the convergence rates for P, are quasi-optimal, the rates for P3, P4 only
achieve suboptimal convergence. This is due to u € H37¢($2). Given the low regularity of
the solution u, these results are the best that can be achieved with quasi-uniform meshes.
To address this, we apply the adaptive C? interior penalty method based on the residual-
based a posteriori error estimator nx in (4.6). The corresponding numerical solutions of the
adaptive algorithm using the error estimator 1 are presented in Figure 11. Figure 9 and Fig-
ure 10 show the adaptive meshes of Pz, P4 approximations, respectively. The error estimator
effectively guides mesh refinements, particularly around the point xo. The convergence rates
of the error estimator n based on P3, P4 polynomials are illustrated in Figures 12(a)-(b),
respectively. These results suggest that the convergence rates of 7 are quasi-optimal for all
three cases. Furthermore, with mesh refinement, the convergence slopes of the error esti-
mators for Cases 1-3 nearly coincide. This demonstrates the superior performance of the
adaptive algorithm based on the a posteriori error indicator presented in this work, especially
when compared with uniform refinement.
Test 2. We set the non-homogeneous Navier boundary conditions. Similar to Test 1, we
apply both the CY interior penalty method and the adaptive C? interior penalty method to
this problem. Numerical results in uniform meshes are listed in Table 4. We perform P3
and P4 polynomial approximations using the adaptive C? interior penalty method, with the
numerical results displayed in Figures 13,14,15,16. The results obtained are similar to those
in Test 1. As mentioned earlier, (i) the convergence rates on uniform meshes are R ~ 1;
(ii) the position of the Dirac point within the cell has a negligible effect on the convergence
rates, whether the meshes are adaptively refined or uniformly refined; (iii) refinements are
concentrated around the point Xg; (iv) The convergence rates of n are quasi-optimal.

Example 5.3 (Homogeneous Neumann boundary) For the final example, we consider prob-
lem (4.16) with homogeneous Neumann boundary on convex domain Q = (—2m, 27) X
(—2m, 27r). The right-hand side function is given as dx, — Jx,, where xo = (-, 0), X1 =
(7r, 0). An initial uniform triangular mesh ’Tho is shown in Figure 17(a).
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(c) Case 3,x0 = (v/5,V/8)
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(a) Case 1,x0 = (0,0) (b) Case 2,x0 = (—V/7,

Fig.9 Example 5.2 Test 1: adaptive meshes for P3

NN
NN,
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Fig. 10 Example 5.2 Test 1: adaptive meshes for Py
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Fig. 11 Example 5.2 Test 1:adaptive solution for P3

The convergence rates of the C? interior penalty method solutions based on P,,, m =
2, 3, 4 polynomials on quasi-uniform meshes are shown in Table 5. We observe that R ~ 1.
Due to the low global regularity of the solution, the convergence rates on quasi-uniform
meshes can not reach the optimal order for Pz, P, polynomial approximations. For enhanced
accuracy, the adaptive C? interior penalty method is better suited for this type of problem. The
contour of adaptive C? interior penalty method approximation based on Ps is shown in Figure
18(a). Figure 17(b)-(c) show the adaptive meshes of P3, P4 polynomial approximations,
respectively. We can see clearly that the error estimator guides the mesh refinement densely
around the points xo and x;. The convergence rates of error estimator 1 based on P3, Py
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Fig. 13 Example 5.2 Test 2: adaptive meshes for P3
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Fig. 14 Example 5.2 Test 2: adaptive meshes for Py

polynomials are shown Figure 18(b)-(c). These results align with expectations, indicating
that the convergence rates of the error estimator are quasi-optimal.
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Fig. 16 Example 5.2 Test 2: error estimators

Table 5 Example 5.3: Convergence rate of numerical solution in uniform meshes

Py P3 Py
] 4 5 6 7 3 4 6 2 3 4 5
R 087 09 091 092 100 100 100 1.00 1.00 100 1.00 1.00
Xo X1

(a) Initial mesh

(b) Adaptive mesh of Ps

Fig. 17 Example 5.3: initial mesh and adaptive meshes
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Fig. 18 Example 5.1: numerical solution and error estimators

6 Conclusion

Two residual-based a posteriori estimators are proposed for biharmonic problem (1.1). The
first estimator is directly derived from the model equation, while the second estimator is
based on the projection of the Dirac delta function onto the discrete finite element space. The
later one introduces an additional projection error, which is included in the error estimator,
yielding a similar effect to the first estimator in guiding mesh refinement. For both a posteriori
estimators, we rigorously prove that these estimators are efficient and reliable. An adaptive
CY interior penalty algorithm is provided based on the proposed a posteriori estimators.
Extensions of the first estimator to more general fourth order elliptic equations are provided,
and quasi-optimal convergence rates are numerically observed.

For the biharmonic problem (1.1) in three dimensions, the geometry of edges and corners
significantly affects the regularity of the solution. Moreover, the singularity introduced by
the Dirac delta function differs from that in two dimensions. Although the C? interior penalty
method can be extended to three dimensions, the results and analysis may differ substantially.
We leave this investigation for future work.
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