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TOWARDS DYNAMICAL LOW-RANK APPROXIMATION FOR

NEUTRINO KINETIC EQUATIONS. PART I: ANALYSIS OF AN

IDEALIZED RELAXATION MODEL

PEIMENG YIN, EIRIK ENDEVE, CORY D. HAUCK, AND STEFAN R. SCHNAKE

Abstract. Dynamical low-rank approximation (DLRA) is an emerging tool
for reducing computational costs and provides memory savings when solving
high-dimensional problems. In this work, we propose and analyze a semi-
implicit dynamical low-rank discontinuous Galerkin (DLR-DG) method for the
space homogeneous kinetic equation with a relaxation operator, modeling the
emission and absorption of particles by a background medium. Both DLRA
and the discontinuous Galerkin (DG) scheme can be formulated as Galerkin
equations. To ensure their consistency, a weighted DLRA is introduced so that
the resulting DLR-DG solution is a solution to the fully discrete DG scheme
in a subspace of the standard DG solution space. Similar to the standard DG
method, we show that the proposed DLR-DG method is well-posed. We also
identify conditions such that the DLR-DG solution converges to the equilib-
rium. Numerical results are presented to demonstrate the theoretical findings.

1. Introduction

In this paper, we consider high-order approximation methods for solving kinetic
equations using low-dimensional surrogates that capture their essential features.
These methods have been demonstrated to be computationally cheaper for many
high-dimensional dynamical systems (see, e.g., [20]), and dynamical low-rank ap-
proximation (DLRA) is one well-known method used for this purpose. Specifically,
we analyze a dynamical low-rank discontinuous Galerkin (DLR-DG) method used
to approximate a space homogeneous kinetic equation that models the emission
and absorption of particles by a background medium. This background medium is
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represented as an external source which determines the equilibrium of the model
for long time simulations.

Kinetic models of particle systems involve the evolution of the particle distribu-
tion function f(p,x, t), a phase-space density depending on the particle momentum
p ∈ R3, position x ∈ R3, and time t. Kinetic equations, governing the evolution of
f , are expressed as a balance between phase-space advection (e.g., due to inertia
and external forces) and collisions (e.g., due to interparticle interactions or interac-
tions with a background). In the absence of collisions, the distribution function can
develop complex phase-space structures, while collisions tend to drive f towards an
equilibrium, characterized by (spatially) local conditions, in which the dynamics
can be accurately described by fluid models (where variables depend only on x
and t). As such, kinetic models are high-dimensional models that can exhibit low-
dimensional structure under certain conditions (e.g., particle systems undergoing
frequent collisions).

DLRA methods can be traced back to the Dirac–Frenkel–McLachlan variational
principle developed in the 1930s [13,19] and function by evolving a dynamical sys-
tem on the Riemannian manifold of fixed rank matrices. This evolution is achieved
by projecting the right-hand side of a matrix differential equation onto the tangent
space of the manifold, which yields a set of differential equations that govern the fac-
tors of an SVD-like decomposition. As such, they can be suitable for modeling high-
dimensional systems that exhibit dynamics in a lower-dimensional manifold (e.g.,
kinetic equations). Recently, they have been applied to simulate high-dimensional
quantum systems, biological cellular systems [6,23,28], kinetic/transport equations
[12, 14–17, 32–34], hyperbolic problems with uncertainty [26], and neural network
training [36]. Several integrators have been developed to overcome the stiffness in-
duced by the high curvature of the manifold [10,24,29]. In this paper, we analyze a
semi-implicit basis-update & Galerkin (SIBUG) integrator which is the unconven-
tional integrator of [10] with implicit time stepping in each of the substeps of the
integrator. For collision operators, including the relaxation operator studied in this
work, implicit time discretization is desired because the short time scales induced
by collisions can render explicit methods inefficient.

The discontinuous Galerkin (DG) method is a finite element method that uses
a discontinuous piecewise polynomial space to approximate the numerical solution.
The method offers several advantages, such as high-order accuracy on a compact
stencil, compatibility with hp-adaptivity, and the ability to handle domains with
complex geometry [22, 35, 37]. Its mathematical formulation makes it amenable to
rigorous analysis. Moreover, DG methods are attractive for solving kinetic equa-
tions because of their ability to maintain structural properties (e.g., asymptotic
limits [2, 21, 27] and conservation [3, 11]) of the continuum model formulation, in
part, because of flexibility in the approximation spaces. However, the use of the
DG methods to solve kinetic equations in full dimensionality, without any form of
adaptivity to reduce the total number of degrees of freedom, can be computationally
expensive.

The DLR-DG method studied in this paper applies DLRA to the matrix differ-
ential equation resulting from the semi-discretization of the kinetic equation using
the DG method. The combination of DLRA and DG methods aims to leverage
the benefits of both approaches by lowering the computational complexity relative
to standard DG methods while retaining high-order accuracy. In this work, we
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DLR-DG 1201

consider a model kinetic equation of relaxation-type in reduced dimensionality (by
assuming homogeneity in physical space and imposing axial symmetry in momen-
tum space) and focus on establishing conditions for which the DLR-DG formulation
possesses the same properties as the standard DG scheme. The equation is, e.g.,
used to model the emission and absorption of neutrinos by stellar matter during
the explosion of massive stars [8, 9, 30]. We use spherical-polar momentum space
coordinates; as a result, a volume Jacobian appears in the inner product of the DG
scheme, giving a matrix weight in the matrix differential equation. This weighting
must be respected in the DLRA formulation in order to obtain similar stability and
well-posedness results as in the standard DG method.

Additionally, many systems for which DLRA is applied are autonomous with
equilibria that arise from the invariants embedded in the dynamics. However, there
has been a lack of analysis in how DLRA integrators behave when equilibria depend
on the presence of external sources. We believe this analysis is fruitful since, even
when applied to linear problems, the nonlinear DLRA model, in the continuum, is
only well-posed up to finite time [4, 25]. This finite time condition coincides with
the solution leaving the fixed-rank manifold – a property that is influenced by ex-
ternal sources. Error analysis has shown that DLRA integrators [10,29] are robust
in regimes where the DLRA solution might fail to exist in the continuum, but this
analysis assumes a sufficiently small timestep in order to control the consistency
error introduced by these integrators. This manuscript provides conditions to guar-
antee convergence of the SIBUG to an equilibrium solution from external sources
that is valid for larger timesteps as is often taken with an implicit method. The
analysis is technical and requires estimates on each substep of the SIBUG. More-
over, unlike standard DG methods where estimates for one timestep can be easily
bootstrapped into multi-step estimates, the temporally varying reduced-order ba-
sis generated by DLRA requires conditions, given in this work, to extend one-step
estimates over multiple timesteps.

The rest of the paper is organized as follows. In Section 2, we introduce the space
homogeneous kinetic equation, the full-rank DG discretization, and summarize the
properties of the full-rank DG solution. In Section 3, we formulate the matrix
differential equation associated with the DG scheme and introduce its weighted
DLRA. In Section 4, we introduce the SIBUG and the equivalent DLR-DG scheme.
By analysis of the DLR-DG scheme, we prove the well-posedness of the SIBUG and
the convergence of the DLR-DG solution to the equilibrium. Numerical examples
illustrating the theoretical results are given in Section 5.

2. Background

2.1. Model equations. The space homogeneous kinetic equation modeling the
emission and absorption of particles by a material background at rest can be written
as (see, e.g., [31])

(2.1)
∂tf(x, ε, ϑ, ϕ, t) =C(f)(x, ε, ϑ, ϕ, t),

f(x, ε, ϑ, ϕ, t = 0) =f0(x, ε, ϑ, ϕ),

where f ≥ 0 is the phase-space distribution function depending on position x ∈
Dx ⊂ R3, and spherical-polar momentum coordinates (ε, ϑ, ϕ), and time t ≥ 0.
Here, ε ≥ 0 is the particle energy, ϑ ∈ [0, π] is the latitudinal angle, and ϕ ∈ [0, 2π)
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the azimuthal angle. We also introduce the latitudinal angle cosine μ = cos(θ) ∈
[−1, 1].

Since we consider the space homogeneous case in this paper, we will suppress
the explicit dependence on the position coordinate x from hereon. Furthermore,
we impose axial symmetry in the azimuthal direction in momentum space (i.e., f
is independent of ϕ). We then write (2.1) as

∂tf(ε, μ, t) =C(f)(ε, μ, t),(2.2a)

f(μ, ε, t = 0) =f0(μ, ε),(2.2b)

where the collision operator on the right-hand side is given by

(2.3) C(f)(ε, μ, t) = η(ε)− χ(ε)f(μ, ε, t),

where η > 0 is the emissivity and χ > 0 is the opacity. Both the emissivity and
opacity are assumed to be independent of the momentum space angle cosine μ, as is
often done when the particle-material coupling is modeled in the material rest frame
[31]. The specific dependence of the opacity χ on the particle energy ε depends
on the details of the particle-material interaction process. The problem (2.2) is
well-posed if χ(ε) ∈ L∞(R) and

∫
R
ε2η2dε < ∞. Generally, we make Assumption

2.1 on χ.

Assumption 2.1. There exist constants χmin, χmax such that

(2.4) 0 < χmin ≤ χ ≤ χmax.

Under Assumption 2.1, it can be verified that as t → ∞ the solution f(μ, ε, t)
to (2.2) converges to the isotropic equilibrium solution fEq(ε) = η(ε)/χ(ε), which
is the solution to the steady equation

(2.5) C(fEq) = 0.

Since fEq is low-dimensional (independent of μ), and the true solution is given by
f(μ, ε, t) = f0e

−χt + (1− e−χt)fEq, it is expected that f will become independent
of μ when χt � 1.

There is no coupling across energies in the collision term on the right-hand side
of Eq. (2.2), and ε is simply a parameter of the model. However, we include the
energy dimension in the DG discretization to develop a more general framework that
can accommodate coupling in energy and angle — either through the inclusion of
inelastic scattering or external fields. In addition, discretizing in both energy and
angle allows us to capture momentum space structures.

2.2. DG discretization and matrix equations. Given εmax > 0, we denote the
computational domain by Ω = {(μ, ε) : μ ∈ [−1, 1], ε ∈ [0, εmax]} with volume mea-
sure dΩ = ε2dεdμ.1 Let L2(Ω) be the Hilbert space of square integrable functions
defined on Ω with respect to the measure dΩ, and inner product denoted by

(2.6) (v, w; ε2)Ω :=

∫
Ω

vw dΩ =

∫ εmax

0

∫ 1

−1

vw ε2dμdε.

The associated norm on L2(Ω) is given by ‖εw‖2L2(Ω)
:= (w,w; ε2)Ω.

1The Lebesgue measure for axially symmetric functions defined on a ball centered at 0 in R3

is 2πε2dεdμ, but we drop the 2π as each integral will have it as a common factor.
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We write Ω = Ωμ×Ωε, where Ωε = [0, εmax] and Ωμ = [−1, 1] with measures ε2dε
and dμ, respectively. Let (·, ·; ε2)Ωε

and (·, ·)Ωμ
be the L2 inner products induced

from the given measures.
Given Nε ∈ N and Nμ ∈ N, we partition Ωε and Ωμ into Nε and Nμ cells,

respectively. Denote these partitions by

0 = ε1/2 < ε3/2 < . . . < εNε−1/2 < εNε+1/2 = εmax,(2.7)

−1 = μ1/2 < μ3/2 < . . . < μNμ−1/2 < μNμ+1/2 = 1.(2.8)

We partition the domain Ω into logical rectangles given by

(2.9) Kij = {(μ, ε) : μ ∈ Kμ
i
, ε ∈ Kε

j },

where Kμ
i
= [μi−1/2, μi+1/2] for 1 ≤ i ≤ Nμ, and Kε

j = [εj−1/2, εj+1/2] for 1 ≤ j ≤
Nε.

We now define the discontinuous Galerkin finite element space in each direction
as

(2.10) Vz,h := {φ ∈ L2(Ωv) : φ|Kz
i
∈ Pk(K

z
i ), 1 ≤ i ≤ Nz},

where z = μ, ε, and Pk denotes polynomials of maximal degree k. The discontinuous
Galerkin finite element space is defined as

Vh = Vμ,h ⊗ Vε,h = {v : v|Kij
∈ Qk(Kij), 1 ≤ i ≤ Nμ, 1 ≤ j ≤ Nε},

where Qk denotes the space of tensor-product polynomials of degree at most k for
each variable defined on Kij.

Generally, for a scalar function v and vector valued functions V = [v1, . . . , vm]� ∈
Rm and W = [w1, . . . , wn]

� ∈ Rn, defined on D ⊆ Ω, we define

(2.11)
(v,W ;φ)D =(W , v;φ)D = [(v, wj ;φ)D]n×1 ∈ R

n,

(V ,W�;φ)D =[(vi, wj ;φ)D]m×n ∈ R
m×n,

where φ = φ(ε) > 0 is a specified weighting function.

2.2.1. Semi-discrete full-rank DG scheme. The standard semi-discrete DG scheme,
which we call the semi-discrete full-rank DG scheme for (2.2), together with the
initial data (2.2b), is to find fh(μ, ε, t) ∈ Vh such that

(∂tfh, wh; ε
2)Ω = A(fh, wh), ∀wh ∈ Vh,(2.12a)

(fh|t=0, wh; ε
2)Ω = (f0, wh; ε

2)Ω, ∀wh ∈ Vh,(2.12b)

where A : L2(Ω)× L2(Ω) → R is defined by

(2.13) A(fh, wh) = (C(fh), wh; ε
2)Ω =

(
η, wh; ε

2
)
Ω
−
(
χfh, wh; ε

2
)
Ω
.

Remark 2.2. We use the term full-rank throughout the paper to refer to a standard
discontinuous Galerkin discretization with no low-rank techniques applied.

Definition 2.1. The discrete equilibrium fEq
h ∈ Vh is the solution to the variational

problem

(2.14) A(fEq
h , wh) = 0 ∀wh ∈ Vh.

Moreover, the following statement holds for the discrete equilibrium.
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Lemma 2.3. Under Assumption 2.1, Eq. (2.14) admits a unique solution fEq
h ,

which is a quasi-optimal approximation to fEq in L2(Ω), i.e.,

(2.15) ‖(fEq − fEq
h )ε‖L2(Ω) ≤

χmax

χmin
inf

wh∈Vh

‖(fEq − wh)ε‖L2(Ω).

Proof. From Assumption 2.1, the bilinear form (χ · , ·)Ω is coercive on Vh × Vh;
therefore the well-posedness of (2.14) is immediate. Subtracting (2.14) from the
variational formulation of (2.5) gives a Galerkin orthogonality condition

(2.16)
(
χ(fEq − fEq

h ), wh; ε
2
)
Ω
= 0, ∀wh ∈ Vh.

Assumption 2.1 and (2.16) are then used in a standard finite element argument (see
[7, (2.8.1)]) that yields the Céa-type estimate (2.15). �
2.2.2. Fully-discrete full-rank DG scheme. We wish to employ implicit time dis-
cretization methods because the short time scales induced by collision operators
can render explicit methods inefficient. For n ≥ 0, let fn

h = fh(μ, ε, t
n) ∈ Vh be an

approximation of f(μ, ε, tn), where tn = nΔt and Δt > 0 is a specified time step.
We apply a backward Euler time discretization to the semi-discrete full-rank DG
scheme (2.12). For simplicity, we denote

(2.17) Dtv
n+1 =

vn+1 − vn

Δt
,

where v can be any function (or matrix in the later sections). Then, the first-order
fully-discrete full-rank DG scheme for (2.2) is to find fn+1

h ∈ Vh such that

(2.18)
(
Dtf

n+1
h , wh; ε

2
)
Ω
= A(fn+1

h , wh) ∀wh ∈ Vh.

We now give the following result detailing the well-posedness, and convergence
to the discrete equilibrium of the fully-discrete full-rank DG scheme. For brevity,
we omit the proof, since in Section 4, we prove a similar result in the low-rank
setting.

Proposition 2.4. For any Δt > 0, there exists a unique solution fn+1
h of the

fully-discrete, full-rank DG scheme (2.18) such that

(i) The solution fn+1
h is L2 stable in the following sense:

(2.19) ‖εfn+1
h ‖L2(Ω) ≤ cn+1‖εf0‖L2(Ω) +

1

χmin
(1− cn+1)‖εη‖L2(Ω),

where the parameter c is given by

(2.20) c =
1

1 +Δtχmin
.

(ii) The distance between fn+1
h and the discrete equilibrium fEq

h is geometrically
decreasing:

(2.21) ‖ε(fn+1
h − fEq

h )‖L2(Ω) ≤cn+1‖ε(f0
h − fEq

h )‖L2(Ω),

where fEq
h satisfies (2.14).

Remark 2.5. For large Δt, (2.21) implies that fn
h converges to fEq

h at a rate O(Δt−n)
for any n ≥ 1.

The main objective of this paper is to establish results analogous to Proposi-
tion 2.4 when the dynamical low-rank approximation is applied to the DG scheme.
These are given in Section 4.
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3. Dynamical low-rank formulation

In this section, we formulate low-rank approximations to (2.12).

3.1. Formulation of the matrix differential equation. In order to apply the
dynamical low-rank approximation, we first convert (2.12) into an equivalent matrix
differential equation via a basis expansion. Let {xi(μ)}mi=1 and {yj(ε)}nj=1 be bases
for the finite element spaces Vμ,h and Vε,h, respectively. Here, m = (k + 1)Nμ

and n = (k + 1)Nε. We construct these bases using local Legendre polynomials
on the local cells Kμ

i
and Kε

j that are orthonormal with respect to the local inner
products L2(Kμ

i
) and L2(Kε

j ), respectively. With this choice {xi(μ)}mi=1 forms on an
orthonormal basis for Vμ,h. However, {yj(ε)}nj=1 does not form on an orthonormal

basis for Vε,h due to the weight ε2 in the inner product (cf. (2.6)). This fact has
technical consequences for the remainder of the paper.

Given a function wh ∈ Vh, its basis expansion can be written as

(3.1) wh =
m∑
i=1

n∑
j=1

Wij(t)xi(μ)yj(ε) = X�(μ)W (t)Y (ε),

where X : Ωμ → R
m and Y : Ωε → R

n are defined by

(3.2) X(μ) = [x1(μ), . . . , xm(μ)]� and Y (ε) = [y1(ε), . . . , yn(ε)]
�.

We call W = [Wij ] ∈ Rm×n the coefficient matrix of wh (with respect to the bases
{xi(μ)}mi=1 and {yj(ε)}nj=1). For each fixed i, W satisfies

(3.3)
n∑

j′=1

(yj , yj′ ; ε2)Ωε
Wij′ = (wh, xiyj ; ε

2)Ω, j = 1, . . . , n.

Definition 3.1. Given matrices A,B ∈ Rm×n with entries Aij and Bij , their
Frobenius inner product is (A,B)F = tr(A�B) =

∑m
i=1

∑n
j=1 AijBij . The Frobe-

nius norm of A is ‖A‖F =
√
(A,A)F.

Lemma 3.1 relates weighted inner products of DG functions to weighted Frobe-
nius inner products of the associated coefficient matrices. It follows from a direct
calculation using (3.1).

Lemma 3.1. Let Z ∈ Rm×n and W ∈ Rm×n be the coefficient matrices of zh ∈ Vh

and wh ∈ Vh, respectively, and let φ = φ(ε) be a scalar function. Then

(3.4) (φ(ε)zh, wh; ε
2)Ω = (ImZAφ,W )F = (ZAφ,W )F,

where Im is the m×m identity matrix and the symmetric matrix

(3.5) Aφ = (φ(ε)Y �(ε), Y (ε); ε2)Ωε
∈ R

n×n,

is block diagonal due to the locality of the basis. If further φ(ε) > 0, then Aφ is also
positive-definite.

Corollary 3.2. Let F ∈ Rm×n be the coefficient matrix of the DG solution fh ∈ Vh

in (2.12), and W ∈ Rm×n be the coefficient matrix of any function wh ∈ Vh. Then
the semi-discrete DG scheme (2.12) is equivalent to the following problem: Find
F (t) ∈ Rm×n such that

(∂tF (t)A1,W )F = (G(F ),W )F , ∀W ∈ R
m×n,(3.6a)

F (0) = F0,(3.6b)
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where F0 ∈ Rm×n is the coefficient matrix of fh(μ, ε, 0) obtained by solving (2.12b).
Here A1 is the symmetric positive-definite, block-diagonal matrix defined by (3.5)
with φ = 1, and G is the affine function defined by

(3.7) G(F ) = L0L
�
η − FAχ,

where

(3.8) L0 = (1, X)Ωμ
∈ R

m×1, Lη = (η, Y ; ε2)Ωε
∈ R

n×1,

and the symmetric positive-definite, block-diagonal matrix Aχ is defined by (3.5)
with φ = χ.

The variational problem (3.6) immediately yields the following matrix-valued
ODE:

(3.9) ∂tF = G(F )A−1
1 .

3.2. Weighted dynamical low-rank approximation. Let Mr ⊂ R
m×n be the

manifold of rank-r matrices (r ≤ min{m,n}). The Dynamical Low-Rank Approx-
imation (DLRA) is traditionally formulated by evolving the matrix-valued ODE
(3.9) on Mr by a Galerkin projection of ∂tF onto the tangent space of Mr cen-
tered at F (see e.g., [25]). This projection is on the space of m × n matrices and
is traditionally orthogonal with respect to the standard Frobenius inner product
in Definition 3.1. However, such a formulation will not preserve the natural equiv-
alence between the Galerkin equation of the DRLA and the matrix variational
problem in (3.6). In order to maintain this equivalence in the DLRA framework,
we propose a modification to the standard DLRA approach that uses the weight
A1 to characterize the tangent space.

Definition 3.2. For any Z,W ∈ Rm1×n, 1 ≤ m1 ≤ m, and any symmetric positive
definite matrix M ∈ R

n×n with Cholesky factorization M = C�C, the M -weighted
Frobenius inner product and its induced norm on Rm1×n are given by

(3.10) (Z,W )M := (ZM,W )F = (ZC�,WC�)F and ‖W‖2M := (W,W )M .

Remark 3.3. The weighted Frobenius norm serves two purposes. The first is to
introduce the matrix weight induced by the ε2 integration weight in the definition
of A; see (2.13). The second is to introduce linear operations on the energy basis
that, due to the transpose that appears in the rank-based representation of a matrix
(e.g., the matrix E� in (3.12)), are often represented by left matrix multiplication.
Thus for consistency, we reserve the usual vector norm ‖ · ‖ on Rn for column
vectors x ∈ R

n×1 and use the Frobenius norm for row vectors x� ∈ R
1×n, ‖x�‖2F =

tr(xx�) = ‖x‖2.

Definition 3.3. Let F̂0 ∈ Mr be given. The (weighted) dynamical low-rank

approximation to (3.9) is given by the solution F̂ ∈ Mr (where F̂ approximates F )
of the differential equation

(3.11) ∂tF̂ = argmin
δF̂∈TF̂Mr

J(δF̂ ), where J(δF̂ ) = ‖δF̂ −G(F̂ )A−1
1 ‖A1

,

with initial condition F̂ (0) = F̂0. Here, TF̂Mr is the tangent space of Mr at F̂ .

Remark 3.4. The initial condition F̂0 should be a rank-r approximation to F (0).

We delay the choice of F̂0 until the end of this section.
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Like the usual DLRA [25], (3.11) can be rewritten into an equivalent system

that updates the components of the low-rank decomposition of F̂ in time; this
equivalent system is often called the equations of motion. Let F̂ have the rank-r
decomposition

(3.12) F̂ = USE�, where U�U = E�A1E = Ir,

with U ∈ Rm×r, S ∈ Rr×r, and E ∈ Rn×r all full-rank matrices.2 In terms of U ,
S, and E, the tangent space of Mr at F̂ is (see e.g., [25]):

(3.13) TF̂Mr = {δUSE� + UδSE� + USδE� : U�δU = 0, E�A1δE = 0},
where δU ∈ Rm×r, δS ∈ Rr×r, and δE ∈ Rn×r. Due to the gauge conditions
U�δU = E�A1δE = 0 in (3.13), any matrix δF̂ ∈ TF̂Mr has the unique decom-
position
(3.14)

δF̂ = δUSE� + UδSE� + USδE� = P⊥
U δF̂A1PE + PUδF̂A1PE + PUδF̂

�A1P
⊥
E ,

where

(3.15) δU = P⊥
U δF̂A1ES−1, δS = U�δF̂A1E, and δE = P⊥

E A1δF̂
�US−T

with symmetric matrices

(3.16) PU = UU� and P⊥
U = Im − PU ,

and

(3.17) PE = EE� and P⊥
E = A−1

1 − PE.

The matrix PU is the orthogonal projection onto the column space of U with respect
to the standard inner product on Rm and P⊥

U is its orthogonal complement. The
matrix PEA1 is the orthogonal projection onto the column space of E with respect
to the inner product on Rn with weight A1. Moreover, for any Z,W ∈ R�×n,
1 ≤ � ≤ m,

(3.18) (ZA1PE ,W )A1
= (Z,WA1PE)A1

,

where (·, ·)A1
is the Frobenius inner product defined in Definition 3.2.

We now give several equivalent formulations of the weighted DLRA solution F̂
in Definition 3.3.

Proposition 3.5. The solution F̂ = USE� ∈ Mr of Definition 3.3, with initial
data F̂ (0) = U0S0(E0)� ∈ Mr where (U0)�U0 = (E0)�A1E

0 = Ir, satisfies the
equivalent problems [25]

(i) ∂tF̂ ∈ TF̂Mr is the solution of the Galerkin condition(
∂tF̂ −G(F̂ )A−1

1 , δF̂
)
A1

= 0, ∀δF̂ ∈ TF̂Mr,(3.19a)

F̂ (0) = U0S0(E0)�.(3.19b)

(ii) The factors of F̂ satisfy the equations of motion given by

U̇ = P⊥
U G(F̂ )ES−1, Ṡ = U�G(F̂ )E, Ė = P⊥

E G(F̂ )�US−T ,(3.20a)

U(0) = U0, S(0) = S0, E(0) = E0,(3.20b)

2Unless otherwise stated, any matrices denoted with U and E satisfy U�U = Ir and E�A1E =
Ir, respectively.
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where P⊥
U and P⊥

E are defined in (3.16) and (3.17), respectively.
(iii) The matrices K = US ∈ R

m×r, L = ES� ∈ R
n×r, and S satisfy the coupled

ODE system3

K̇ = G(KE�)E, L̇ = A−1
1 G(UL�)�U, Ṡ = U�G(USE�)E,(3.21a)

K(0) = U0S0, L(0) = E0(S0)�, S(0) = S0.(3.21b)

Proof. We give a short sketch.

• Definition 3.3 ⇔ (i). The minimization problem (3.11) is unchanged if J is
replaced by 1

2J
2. The minimization of this strongly convex quadratic functional

over the linear subspace TF̂Mr is equivalent to the Galerkin condition (i).

• (i) ⇒ (ii). Since ∂tF̂ = U̇SE� +UṠE� +USĖ�, the equations for U̇ , Ṡ, and Ė
in (3.20) can be found from (3.19a) by testing against

(3.22)
δUSE� = P⊥

U UWS−�E�, UδSE� = USWE�, US(δE)� = US−�E�
WA1P

⊥
E ,

respectively, where UW ∈ Rm×r, SW ∈ Rr×r, and EW ∈ Rn×r are arbitrary. By
the arbitrariness of UW , SW , EW , and the gauge condition U�U̇ = E�A1Ė = 0,
(3.19a) reduces (3.20a).

• (ii) ⇔ (iii). Direct calculation: Take the derivative of K and L and use the
product rule, (3.16), and (3.17).

• (ii) ⇒ (i). From the equations of motion (3.20),

(3.23) ∂tF̂ = U̇SE� + UṠE� + USĖ� = P⊥
U GPE + PUGPE + PUGP⊥

E .

Plugging (3.23) and (3.14) into (3.19a), using (3.16) and (3.17), verifies the result.

�

Remark 3.6. With the DLRA defined in Definition 3.3, the semi-discrete DG scheme
in matrix formulation (3.6a) is identical to the Galerkin equation of the DRLA
(3.19a) when the coefficient matrix of the DG solution possesses a rank-r decom-
position and evolves tangentially to Mr.

4. Fully discrete dynamical low-rank DG schemes

In this section, we propose a fully discrete dynamical low-rank DG (DLR-DG)
method. Similar to Proposition 2.4 for the full-rank scheme, we investigate the
well-posedness of the DLR-DG method and show the convergence of its solution to
the equilibrium for a sufficiently large time step.

4.1. The fully discrete DLR-DG schemes. Applying a numerical integrator to
the equations of motion in the form of Eq. (3.20) will produce an unstable method
unless Δt is of the same order as the smallest singular value of S [29]. Several
DLRA temporal integrators have been developed with timestep restrictions that
are much more reasonable [10,24,29]. Here we choose the basis-update & Galerkin
(BUG) integrator [10], which is easily combined with the backward Euler method.

3We use bold notation to represent key matrices formed by the product of matrices.
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4.1.1. A semi-implicit BUG integrator. The BUG integrator of [10] can be viewed
as a splitting method applied to the KLS system in Eq. (3.21), where the K and L
equations are decoupled and updated independently, followed by an update using
the S equation. We use backward (implicit) Euler for the underlying numerical
integrator for all equations as collision operators generally induce timescales that
cannot be efficiently advanced with an explicit method. Given Δt > 0 and the
factored rank-r matrix F̂ n = UnSn(En)� with factors satisfying

(4.1) (Un)�Un = Ir, (En)�A1E
n = Ir,

one step of the method generates a new rank-r matrix factorization

(4.2) F̂ n+1 = Un+1Sn+1(En+1)�

with factors satisfying

(4.3) (Un+1)�Un+1 = Ir, (En+1)�A1E
n+1 = Ir.

Algorithm 4.1 precisely defines the semi-implicit basis-update & Galerkin integra-
tor.

Algorithm 4.1. A semi-implicit basis-update & Galerkin (SIBUG) integrator.

• Input: Un, Sn, En, Δt; output: Un+1, Sn+1, En+1.
• Step 1: Update Un → Un+1 and En → En+1 in parallel:
– K-step:

∗ Solve for Kn+1 from the m× r matrix equation

(4.4) DtK
n+1 = G(Kn+1(En)�)En, Kn = UnSn.

∗ Perform a QR factorization Kn+1 = Un+1RK.
∗ Compute the r × r matrix Mn+1 = (Un+1)�Un.

– L-step:
∗ Solve for Ln+1 from the n× r matrix equation

(4.5) DtL
n+1 = A−1

1 G(Un(Ln+1)�)�Un, Ln = En(Sn)�.

∗ Perform a generalized QR factorization (Algorithm B.3) Ln+1 = En+1RL.
∗ Compute the r × r matrix Nn+1 = (En+1)�A1E

n.
• Step 2: Update Sn → Sn+1:
– S-step:

∗ Project Sn to the new bases

(4.6) Sn,∗ = Mn+1Sn(Nn+1)�.

∗ Solve for Sn+1 from the r × r matrix equation

(4.7)
Sn+1 − Sn,∗

Δt
= (Un+1)�G(Un+1Sn+1(En+1)�)En+1.

Remark 4.1. The following remarks apply to Algorithm 4.1.

(a) The choice of bases Un+1 and En+1 used in the S-step is not unique. For
any unitary matrices VU , VE ∈ Rr×r, the matrices Un+1VU and En+1VE could
replace Un+1 and En+1, respectively, without changing F̂ n+1.

(b) The algorithm is semi-implicit since it uses explicit evaluation of the bases Un

and En in Eqs. (4.4) and (4.5), respectively, but makes implicit updates for
Kn+1, Ln+1, and Sn+1.
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(c) Sn,∗ in (4.6) is the projection of Sn under the new bases Un+1 and En+1.
Thus, ‖Sn,∗‖F ≤ ‖Sn‖F. For sufficiently large Δt, the projection error does
not affect the SIBUG solution’s convergence to an equilibrium.

(d) Other than Algorithm B.3, the factorization Ln+1 = En+1RL in the L-step

can alternatively be computed by a regular QR factorization Ln+1 = Ẽn+1R̃L

with (Ẽn+1)�Ẽn+1 = Ir, followed by the weighted Gram–Schmidt decompo-

sition Ẽn+1 = En+1R̄L with En+1 satisfying (4.3), and then setting RL =

R̄LR̃L. The stability of this alternative factorization has been numerically
verified, and we recover the same results as when using Algorithm B.3.

(e) If L0, defined in (3.8), is in the span of the columns of Un, then UEq =
L0/‖L0‖ = Unz for some vector z ∈ Rr×1. In this case, (4.4) reduces to

(4.8)

Kn+1=UnR̄, where R̄=(Sn+Δt‖L0‖zL�
η E

n)
(
Ir+Δt(En)�AχE

n
)−1∈R

r×r.

Thus, the K-step can be omitted, and we can set Un+1 = Un. (See also
Remark 4.9, following Lemma 4.8.)

(f) The matrix A1, whose inverse is needed in the L-step in Algorithm 4.1, is
positive definite and block diagonal. For a given mesh, its smallest eigenvalue
is bounded away from zero. The inverse, A−1

1 , can be computed (once at
program startup) by inverting each (k + 1)× (k + 1) block independently.

4.1.2. DG formulation of the SIBUG. Given a low-rank approximation f̂n
h with co-

efficient matrix F̂ n = UnSnEn, define the following subspaces of Vh (which depend

on f̂n
h ):

V n
0 =

{
v | v(μ, ε) = X�(μ)UnS(En)�Y (ε), ∀S ∈ R

r×r
}
,(4.9a)

V n
1 =

{
v | v(μ, ε) = X�(μ)K(En)�Y (ε), ∀K ∈ R

m×r
}
,(4.9b)

V n
2 =

{
v | v(μ, ε) = X�(μ)UnL�Y (ε), ∀L ∈ R

n×r
}
.(4.9c)

It is easy to check that f̂n
h = X�UnSn(En)�Y ∈ V n

0 ∩ V n
1 ∩ V n

2 , but f̂n
h �∈ V n+1

0 .
However,

(4.10) fn,∗
S := X�Un+1Sn,∗(En+1)�Y ∈ V n+1

0 ,

where Sn,∗ is given in (4.7). Moreover, fn,∗
S is the L2 projection of f̂n

h onto V n+1
0 :

(4.11) (fn,∗
S , wh; ε

2)Ω = (f̂n
h , wh; ε

2)Ω, ∀wh ∈ V n+1
0 .

Lemma 4.2 establishes an equivalent DG formulation for (4.4)–(4.7).

Lemma 4.2. The matrices Kn+1,Ln+1, Sn+1 are solutions to (4.4), (4.5), (4.7), re-
spectively, iff fn+1

K :=X�(μ)Kn+1(En)�Y (ε) ∈ V n
1 , f

n+1
L :=X�(μ)Un(Ln+1)�Y (ε)

∈ V n
2 , and fn+1

S := X�(μ)Un+1Sn+1(En+1)�Y (ε) ∈ V n+1
0 solve the following DLR-

DG scheme (
Dtf

n+1
K , w1; ε

2
)
Ω
=A(fn+1

K , w1), ∀w1 ∈ V n
1 ,(4.12a) (

Dtf
n+1
L , w2; ε

2
)
Ω
=A(fn+1

L , w2), ∀w2 ∈ V n
2 ,(4.12b) (

Dtf
n+1
S , w0; ε

2
)
Ω
=A(fn+1

S , w0), ∀w0 ∈ V n+1
0 ,(4.12c)

where fn
K = fn

L = fn
S = f̂n

h .
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Proof. We only prove the equivalence between (4.7) and (4.12c); the others can be
proved similarly. Suppose fn+1

S solves (4.12c). Then, by Lemma 3.1, Sn+1 solves

(4.13)

(
Un+1DtS

n+1(En+1)�A1, U
n+1W0(E

n+1)�
)
F

=
(
G(Un+1Sn+1(En+1)�), Un+1W0(E

n+1)�
)
F
,

for all W0 ∈ Rr×r. The matrix form of (4.11):
(4.14)(
UnSn(En)�A1, U

n+1W0(E
n+1)�

)
F
=

(
Un+1Sn,∗(En+1)�A1, U

n+1W0(E
n+1)�

)
F
,

can be used to replace Sn by Sn,∗ in (4.13). Then applying Lemma A.1 and (4.3)
gives

(4.15)

(
Sn+1 − Sn,∗

Δt
,W0

)
F

=
(
(Un+1)�G(Un+1Sn+1(En+1)�)En+1,W0

)
F
.

Since W0 is arbitrary, (4.15) is equivalent to (4.7). �

4.2. Well-posedness. We now obtain an analog of Proposition 2.4(i) for the
SIBUG listed in Algorithm 4.1 – namely that the DLR-DG scheme is uniquely
solvable and uniformly stable.

Lemma 4.3. Given the low-rank representation f̂n
h , from which fn

K, fn
L, and fn

S

can be computed, the first order fully discrete DG scheme (4.12) admits a unique
solution (fn+1

K , fn+1
L , fn+1

S ) ∈ V n
1 × V n

2 × V n+1
0 for any Δt > 0. Equivalently,

Algorithm 4.1 admits a unique matrix solution (Kn+1,Ln+1, Sn+1).

Proof. We only prove the existence and uniqueness for fn+1
S ; the corresponding

results for fn+1
K and fn+1

L can be proved in a similar way. Since (4.12c) is a linear
system in a finite dimensional space where the domain and codomain have the
same dimension, existence is equivalent to uniqueness. Let δfn+1

S ∈ V n+1
0 be the

difference between two possible solutions to (4.12c). Then

(4.16)
(
δfn+1

S , w0; ε
2
)
Ω
= −Δt(χ(ε)δfn+1

S , w0; ε
2)Ω ∀w0 ∈ V n+1

0 .

If w0 = δfn+1
S , then ‖εδfn+1

S ‖2L2(Ω) + Δt‖ε
√

χ(ε)δfn+1
S ‖2L2(Ω) = 0, which implies

δfn+1
S = 0. Therefore, the DG scheme (4.12c) admits a unique solution. The

uniqueness of (fn+1
K , fn+1

L , fn+1
S ) and the equivalence established by Lemma 4.2

imply that Algorithm 4.1 admits the unique matrix solution (Kn+1,Ln+1, Sn+1).
�

Definition 4.1. We define the DG approximation f̂n+1
h = fn+1

S as the DLR-DG

solution, and the subspace V n+1
0 as the DLR-DG space.

The L2 stability of the DLR-DG solution f̂n+1
h is established by Lemma 4.4.

Lemma 4.4. Suppose that ‖εf̂0
h‖L2(Ω) ≤ ‖εf0

h‖L2(Ω). Then the solution of the DG
scheme (4.12) is stable in the following sense

(4.17) ‖εf̂n+1
h ‖L2(Ω) ≤ cn+1‖εf0‖L2(Ω) +

1

χmin
(1− cn+1)‖εη‖L2(Ω),

where c is given in (2.20).
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Proof. Setting w0 = fn+1
S ≡ f̂n+1

h (see Definition 4.1) in (4.12c) gives

(4.18)
(
(1 + Δtχ)f̂n+1

h , f̂n+1
h ; ε2

)
Ω
= (f̂n

h , f̂
n+1
h ; ε2)Ω +Δt(η, f̂n+1

h ; ε2)Ω,

which, with Cauchy-Schwartz, leads to

(4.19) ‖εf̂n+1
h ‖L2(Ω) ≤ c‖εf̂n

h‖L2(Ω) + cΔt‖εη‖L2(Ω),

where c is given by (2.20). Applying (4.19) recursively gives

(4.20)

‖εf̂n+1
h ‖L2(Ω) ≤cn+1‖εf̂0

h‖L2(Ω) +Δt‖εη‖L2(Ω)

n+1∑
i=1

ci

≤cn+1‖εf̂0
h‖L2(Ω) +

1

χmin
(1− cn+1)‖εη‖L2(Ω).

Thus the estimate (4.17) follows from (4.20), the assumption on the initial data,
and the fact that ‖εf0

h‖L2(Ω) ≤ ‖εf0‖L2(Ω). �

4.3. Convergence to the equilibrium distribution. The convergence result in

Proposition 2.4(ii) follows from the fact that the discrete equilibrium fEq
h is in the

trial space of the fully discrete full-rank DG scheme (2.18). However, for the DLR-
DG scheme, the space of trial functions may not contain the discrete equilibrium.
In this subsection, we provide additional conditions to ensure convergence of the

DLR-DG solution f̂n
h to fEq

h . We first evaluate the error between the equilibrium

solution fEq
h and its projection in the DLR-DG space and then investigate the

convergence of f̂n
h to this projection.

The equilibrium solution of the steady state equation (2.14) has the form fEq
h =

X�(μ)F EqY (ε), where G(F Eq) = 0 and G is given in (3.7). Equivalently,

(4.21) F Eq = L0(Lη)
�(Aχ)

−1 and G = (F Eq − F )(Aχ)
−1,

where the vectors L0, Lη, and the matrix Aχ are given in Corollary 3.2. The matrix
F Eq in (4.21) is a rank-1 matrix that can be decomposed as

(4.22) F Eq = UEqSEq(EEq)�,

where UEq ∈ R
m×1, EEq ∈ R

n×1, and SEq ∈ R
1×1 are given by

(4.23)

UEq =
L0

‖L0‖
, EEq =

(Aχ)
−1Lη

‖(Lη)�(Aχ)−1‖A1

, SEq = ‖L0‖‖(Lη)
�(Aχ)

−1‖A1
.

The vectors UEq and EEq satisfy the orthogonality conditions (UEq)�UEq = 1 and
(EEq)�A1E

Eq = 1, and the scalar SEq satisfies the following estimate.

Lemma 4.5. The scalar SEq is uniformly bounded in the following sense:

(4.24) |SEq| = ‖εfEq
h ‖L2(Ω) ≤ χ

−1/2
min ‖εη‖L2(Ω).

Proof. Setting wh = fEq
h in (2.14), it is easy to show that

(4.25) χ
1/2
min‖εf

Eq
h ‖L2(Ω) ≤ ‖εχ1/2fEq

h ‖L2(Ω) ≤ ‖εη‖L2(Ω).

A direct calculation using Lemma A.1 gives ‖εfEq
h ‖2L2(Ω) =

(
F Eq, F Eq

)
A1

= |SEq|2
which, when substituted into (4.25), recovers the estimate (4.24). �
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Let fEq,n
S be the projection of fEq

h onto the DLR-DG space V n
0 that is orthogonal

with respect to the inner product (·, ·; ε2)Ω, defined in (2.6), that is

(fEq,n
S , wh; ε

2)Ω = (fEq
h , wh; ε

2)Ω ∀wh ∈ V n
0 .

Taking the test functions wh = X�(μ)UnS(En)�Y (ε), ∀S ∈ R
r×r implies that the

projection fEq,n
S has an expansion of the form

(4.26) fEq,n
S = X�(μ)PUnF EqA1PEnY (ε) ∈ V n

0 .

4.3.1. Projection error of the equilibrium in the DLR-DG space. The projection of
UEq onto the columns of Un is PUnUEq := Un(Un)�UEq, and the projection error
is

(4.27) ‖UEq − PUnUEq‖2 = 1− ‖PUnUEq‖2 = 1− ‖(Un)�UEq‖2 ∈ [0, 1].

Similarly, the (weighted) projection of EEq onto the space spanned by the columns
of En is PEnA1E

Eq := En(En)�A1E
Eq, and the (weighted) projection error is

(4.28)
‖(EEq)�− (EEq)�A1PEn‖2A1

=1−‖(EEq)�A1PEn‖2A1
=1−‖(En)�A1E

Eq‖2∈ [0, 1].

Lemma 4.6 and Lemma 4.7 provide upper bounds for the projection errors in
(4.28) and (4.27), respectively. Their proofs can be found in Appendix C.1 and
Appendix C.2, respectively.

Lemma 4.6. Assume that for some constant β ∈ (0, 1],

(4.29) ‖PUnUEq‖ ≥ β.

Then, for any δ > 0 and any Δt ≥ Δt1 =
√
r

βδχmin
,

(4.30) 1− ‖(EEq)�A1PEn+1‖2A1
≤ δ2

|SEq|2 ‖ε(f̂
n
h − fEq

h )‖2L2(Ω).

Moreover, if f̂n
h = fEq

h , then for any Δt > 0,

(4.31) ‖(EEq)�A1PEn+1‖A1
= 1.

Define the symmetric matrix

(4.32) Pχ
E = E(ETAχE)−1ET .

Then Pχ
EAχ is the orthogonal projection onto the column space of E with respect

to the inner product on Rn with weight Aχ.

Lemma 4.7. Assume there exists a constant α > 0 such that

(4.33) ‖(EEq)�AχP
χ
En‖A1

≥ α.

Then for any δ > 0 and any Δt ≥ Δt2 =
r1/2χ1/2

max

αδχ
3/2
min

,

(4.34) 1− ‖PUn+1UEq‖ ≤ δ2

|SEq|2 ‖ε(f̂
n
h − fEq

h )‖2L2(Ω).

Moreover, if f̂n
h = fEq

h , then for any Δt > 0,

(4.35) ‖PUn+1UEq‖ = 1.

Lemma 4.6 and Lemma 4.7 can be used to bound the projection error of the
equilibrium with respect to Un+1 and En+1.
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Lemma 4.8. Assume there exist constants β ∈ (0, 1] and α > 0 such that
‖PUnUEq‖ ≥ β and ‖(EEq)�AχP

χ
En‖A1

≥ α. Then for any δ > 0, there exists

(4.36) Δt0 =

√
2

δ
max

{
r1/2

βχmin
,
r1/2χ

1/2
max

αχ
3/2
min

}
such that when Δt ≥ Δt0,

(4.37) ‖ε(fEq,n+1
S − fEq

h )‖L2(Ω) ≤ δ‖ε(f̂n
h − fEq

h )‖L2(Ω).

Moreover, if f̂n
h = fEq

h , it follows that for any Δt > 0,

(4.38) fEq,n+1
S = fEq

h .

Proof. By (4.22), Lemma 3.1, and Lemma A.1,
(4.39)

‖ε(fEq
h − fEq,n+1

S )‖2L2(Ω) = ‖F Eq − PUn+1F EqA1PEn+1‖2A1

= |SEq|2‖(I − PUn+1)UEq(EEq)� + PUn+1UEq(EEq)�(I −A1PEn+1)‖2A1

= |SEq|2
[
‖(I − PUn+1)UEq‖2 + ‖PUn+1UEq(EEq)�(I −A1PEn+1)‖2A1

]
= |SEq|2

[(
1− ‖PUn+1UEq‖2

)
+ ‖PUn+1UEq‖2

(
1− ‖(EEq)�A1PEn+1‖2A1

)]
,

where orthogonality is used in obtaining the third equality.
By Lemma 4.6 and Lemma 4.7 (with δ being replaced by δ/

√
2), it follows that

when Δt ≥ Δt0, where Δt0 is given by Eq. (4.36), the following estimates hold

1− ‖PUn+1UEq‖2 ≤ δ2

2|SEq|2 ‖ε(f̂
n
h − fEq

h )‖2L2(Ω),(4.40a)

1− ‖(EEq)�A1PEn+1‖2A1
≤ δ2

2|SEq|2 ‖ε(f̂
n
h − fEq

h )‖2L2(Ω),(4.40b)

which, when substituted into (4.39), yields (4.37). Then (4.38) follows from (4.39),
using (4.31) and (4.35). �

Remark 4.9. If ‖PUnUEq‖ = ‖(Un)�UEq‖ = 1, then UEq = Unz for some vector
z ∈ R

r×1, and (4.8) implies that the K-step can be omitted for Algorithm 4.1 by

simply taking Un+1 = Un. Then for any δ > 0, there exists Δt0 = r1/2

δχmin
, such that

when Δt ≥ Δt0, (4.37) holds.

4.3.2. Convergence of the DLR-DG solution to the equilibrium. We estimate the

convergence of the DLR-DG solution f̂n+1
h to the equilibrium fEq

h . We first provide
a one-step estimate.

Theorem 4.10. Suppose the assumptions in Lemma 4.8 hold. For any δ > 0, let
Δt0 be given in (4.36). Then for any Δt ≥ Δt0,

(4.41) ‖ε(f̂n+1
h − fEq

h )‖L2(Ω) ≤ (c+ δχ)‖ε(f̂n
h − fEq

h )‖L2(Ω),

where c is given by (2.20) and δχ =
(
1 + χmax

χmin

)
δ. Moreover, if f̂n

h = fEq
h , then for

any Δt > 0,

(4.42) f̂n+1
h = fEq

h .
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Proof. Since η(ε) = χ(ε)fEq(ε), the DG scheme (4.12c) can be written using ((4.11)
and (2.14) as

(4.43)
(
(1 + Δtχ)fn+1

S , wh; ε
2
)
Ω
=

(
ΔtχfEq

h + fn,∗
S , wh; ε

2
)
Ω

∀wh ∈ V n+1
0 .

Subtracting ((1 + Δtχ)fEq,n+1
S , wh; ε

2)Ω from (4.43) yields

(4.44)

(
(1 + Δtχ)(fn+1

S − fEq,n+1
S ), wh; ε

2
)
Ω

=
(
Δtχ(fEq

h − fEq,n+1
S ) + (fn,∗

S − fEq,n+1
S ), wh; ε

2
)
Ω
.

Setting wh = fn+1
S − fEq,n+1

S ∈ V n+1
0 in (4.44) and applying the Cauchy–Schwarz

inequality gives
(4.45)

‖ε(fn+1
S −fEq,n+1

S )‖L2(Ω) ≤ c‖ε(fn,∗
S −fEq,n+1

S )‖L2(Ω)+cΔt‖εχ(fEq,n+1
S −fEq

h )‖L2(Ω),

where c is given by (2.20). By the triangle inequality and (4.45),

(4.46)

‖ε(fn+1
S − fEq

h )‖L2(Ω)

≤ ‖ε(fn+1
S − fEq,n+1

S )‖L2(Ω) + ‖ε(fEq,n+1
S − fEq

h )‖L2(Ω)

≤ c‖ε(fn,∗
S − fEq,n+1

S )‖L2(Ω) + (1 + cΔtχmax)‖ε(fEq,n+1
S − fEq

h )‖L2(Ω).

Additionally, fn,∗
S and fEq,n+1

S are both L2 projections of f̂n
h and fEq

h onto V n+1
0 ;

therefore

(4.47) ‖ε(fn,∗
S − fEq,n+1

S )‖L2(Ω) ≤ ‖ε(f̂n
h − fEq

h )‖L2(Ω).

By (4.46), (4.47), and Definition 4.1, the stability estimate follows:

(4.48)

‖ε(f̂n+1
h − fEq

h )‖L2(Ω)

≤ c‖ε(f̂n
h − fEq

h )‖L2(Ω) +

(
1 +

χmax

χmin

)
‖ε(fEq,n+1

S − fEq
h )‖L2(Ω).

If Δt ≥ Δt0, then (4.37) holds and, when substituted into (4.48), gives (4.41). If

f̂n
h = fEq

h , then (4.38) and (4.48) imply (4.42). �

Remark 4.11. To obtain the one step projection error estimate (4.41) in Theo-
rem 4.10, we can set β = ‖PUnUEq‖ in Lemma 4.6 and α = ‖(EEq)�AχP

χ
En‖A1

in
Lemma 4.7, and these values can be calculated from η and χ. For the multi-step
error estimate, α and β are determined by the initial bases U0 and E0, as described
in Theorem 4.13. These conditions are numerically computed in Example 5.2.

Unlike the full-rank case, the one-step estimate in Theorem 4.10 cannot be triv-
ially extended to a multi-step estimate. This is because of the disconnect between
the conclusion of Lemma 4.6 and the hypothesis of Lemma 4.7, which bound the
projection with respect to the A1- and Aχ-inner products respectively. In order
to bootstrap the one-step estimate further, we require Lemma 4.12 which controls
‖(EEq)�AχP

χ
En‖A1

by ‖(EEq)�A1PEn‖A1
, where Pχ

En is defined in (4.32). This
estimate depends on χmax

χmin
, the weighted condition number of Aχ.

Lemma 4.12. For any α ∈ (0, 1), there exists γ∗ ∈ (α, 1), dependent only on χmax

χmin

and α, such that if E ∈ Rn×r with ETA1E = Ir and ‖(EEq)�A1PE‖A1
≥ γ∗, then

‖(EEq)�AχP
χ
E‖A1

≥ α.
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Proof. Decompose EEq as

(4.49) EEq = EEq
1 + EEq

2 ,

where EEq
1 = PEA1E

Eq is the orthogonal projection of EEq onto the column space

of E and EEq
2 = P⊥

E A1E
Eq is the orthogonal complement satisfying ‖(EEq

1 )�‖2A1
+

‖(EEq
2 )�‖2A1

= 1. Since Pχ
EAχ is also a projection onto the column space of E,

(4.50) Pχ
EAχE

Eq
1 = EEq

1 .

Suppose ‖(EEq
1 )�‖A1

=: γ ∈ (α, 1]. By Lemma C.5,

(4.51) ‖(EEq
2 )�AχP

χ
E‖2A1

≤ χmax

χmin
‖(EEq

2 )�‖2A1
= (1− γ2)

χmax

χmin
.

By (4.49), (4.50), (4.51), Hölder’s and Young’s inequalities, for any τ (γ) ∈ (0, 1),

(4.52)

‖(EEq)�AχP
χ
E‖2A1

= ‖(EEq
1 )�AχP

χ
E + (EEq

2 )�AχP
χ
E‖2A1

= ‖(EEq
1 )� + (EEq

2 )�AχP
χ
E‖2A1

= ‖(EEq
1 )�‖2A1

+ ‖(EEq
2 )�AχP

χ
E‖2A1

+ 2
(
(EEq

1 )�, (EEq
2 )�AχP

χ
E

)
A1

≥ ‖(EEq
1 )�‖2A1

(1− τ (γ)) + ‖(EEq
2 )�AχP

χ
E‖2A1

(
1− 1

τ (γ)

)
≥ γ2(1− τ (γ)) + (1− γ2)

χmax

χmin

(
1− 1

τ (γ)

)
=: g(γ).

Let τ (γ) = 1
2 (1 − α2

γ2 ). Then for every γ ∈ (α, 1], τ satisfies 0 < τ (γ) < 1 and

1− τ (γ) = 1
2 + α2

γ2 > α2

γ2 . Since g is continuous at γ = 1 and g(1) = 1− τ (1) > α2,

there exists γ∗ ∈ (α, 1), dependent on α and χmax

χmin
, such that for any γ∗ ≤ γ ≤ 1,

g(γ) ≥ α2. Therefore by (4.52) the result follows. �

We now have the following multi-step estimate.

Theorem 4.13. Assume there exist constants β ∈ (0, 1) and α ∈ (0, 1) such
that ‖PU0UEq‖ ≥ β and ‖(EEq)�AχP

χ
E0‖A1

≥ α. Let γ∗ ∈ (α, 1) be given in
Lemma 4.12. Then for any
(4.53)

0 < δ < min

{
(1− c)

(
1 +

χmax

χmin

)−1

,

√
2(1−max{γ∗, β}2)‖εfEq

h ‖L2(Ω)

‖ε(f̂0
h − fEq

h )‖L2(Ω)

}
,

and Δt0 given in Theorem 4.10, when Δt ≥ Δt0,

(4.54) ‖ε(f̂n+1
h − fEq

h )‖L2(Ω) ≤ (c+ δχ)
n+1‖ε(f̂0

h − fEq
h )‖L2(Ω) ∀n ≥ 1,

where c is given by (2.20) and δχ =
(
1 + χmax

χmin

)
δ. Moreover, if f̂0

h = fEq
h , then for

any Δt > 0, f̂n+1
h = fEq

h .

Proof. We prove the result by the method of induction. For n = 0, (4.54) follows
from the one-step result in Theorem 4.10; see (4.41). We assume that (4.54) holds
for some n ≥ 1, that is

(4.55) ‖ε(f̂n
h − fEq

h )‖L2(Ω) ≤ (c+ δχ)
n‖ε(f̂0

h − fEq
h )‖L2(Ω).
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By (4.53), (c + δχ) < 1; thus ‖ε(f̂n
h − fEq

h )‖L2(Ω) ≤ ‖ε(f̂0
h − fEq

h )‖L2(Ω). Then for

n+1, the bounds in (4.40), the fact that |SEq| = ‖εfEq
h ‖L2(Ω) (see Lemma 4.5), and

the definition of δ in (4.53) imply that

‖PUn+1UEq‖2 ≥ 1− δ2

2‖εfEq
h ‖2L2(Ω)

‖ε(f̂n
h − fEq

h )‖2L2(Ω) ≥ β2,(4.56a)

‖(EEq)�A1PEn+1‖2A1
≥ 1− δ2

2‖εfEq
h ‖2L2(Ω)

‖ε(f̂n
h − fEq

h )‖2L2(Ω) ≥ (γ∗)2.(4.56b)

By Lemma 4.12, (4.56b) implies ‖(EEq)�AχP
χ
En+1‖A1

≥ α. Therefore, the one-step
estimate (4.41) holds. The estimate (4.54) then follows from (4.41) and (4.55).

Finally, if f̂0
h = fEq

h , by (4.42), f̂n+1
h = f̂n

h = . . . = f̂0
h = fEq

h . �

5. Numerical results

In this section, we present numerical examples to validate our theoretical find-
ings. For all the numerical tests in this section, we construct initial data F̂ (0) =
U0S0(E0)� ∈ Mr for Algorithm 4.1 by applying the generalized singular value
decomposition (GSVD) [1] (Algorithm B.2) to F (0), followed by truncation.

Example 5.1. In this example, we test the performance of the dynamical low-rank
DG scheme in (4.12), or Algorithm 4.1, by comparing with the full-rank DG scheme

in (2.18). We let εmax = 1, and set the opacity χ(ε) = 4 + ε2

2 and the emissivity

η(ε) = fEq(ε)χ(ε), where

(5.1) fEq(ε) =
1

ε2 + 1

is the rank-1 equilibrium distribution. With initial data f(μ, ε, 0)= 1
ε2+1+

1
μ2+ε2+1/2 ,

the exact solution to (2.2) is

(5.2) f(μ, ε, t) =
1

ε2 + 1
+

1

μ2 + ε2 + 1/2
e−χ(ε)t.

We use Q2 polynomials for all the tests in this example.
To establish a baseline, we first test the spatial and temporal accuracy of the

full-rank DG scheme in (2.18) with N = Nμ = Nε cells in each direction. Errors at
t = 1 are shown in Figure 1(a). The convergence rate of the full rank DG scheme
(2.18) is first-order in time (as expected with backward Euler time stepping) and
third-order in phase-space (as expected with Q2 polynomials) until saturation due
to the temporal error. Errors at t = 10 are shown in Figure 1(b). In this case,
the phase-space convergence rate is still third-order for sufficiently small Δt, but
the temporal accuracy is super linear due to the fact that the solution is very near
the time-independent equilibrium distribution. Thus the error follows the bound
in (2.21), which decreases geometrically.

Second, we show the evolution of the rank of the coefficient matrix Fn for the
full-rank DG scheme (2.18), using a mesh with Nμ = Nε = 160. The numerical
rank is calculated with the Matlab function rank(Fn, 10−12), which returns the
total number of singular values of Fn that are larger than 10−12. The results with
different time steps are plotted in Figure 2(a). We observe that the numerical rank
of the coefficient matrix decreases from r = 9 at the initial condition to r = 1 as
the solution approaches equilibrium.
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(a) Errors at t = 1

101 102 103
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10-10

10-8

10-6

(b) Errors at t = 10

Figure 1. Error, ‖ε(f − fn
h )‖L2(Ω), for the full-rank DG scheme in (2.18)

versus number of elements, N = Nμ = Nε, for two different time step sizes.
The scheme uses Q2 polynomials in phase-space and backward Euler time
stepping. In each panel, the solid lines without symbols are reference lines
proportional to N−3.

100 101
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10-4

10-2

10
1
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5
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(a) (b)

Figure 2. (a) Evolution of the numerical rank for the coefficient matrix Fn

of the full-rank DG scheme, plotted vs. time using various time step sizes.
(b) Weighted L2 errors of the DLR-DG method (using r = 1, 2, 3, and 4)
and the full rank DG scheme (2.18) relative to the exact solution versus time,
using Δt = 10−4 and Nμ ×Nε = 160× 160.

Third, we solve (2.2) using both the DLR-DG scheme in Algorithm 4.1 and the
full-rank DG scheme (2.18). The purpose of this test is to compare the DLR-
DG solution with the solution of the full-rank DG scheme (2.18) as the rank r in
Algorithm 4.1 increases. The L2 errors of the numerical solutions are plotted in
Figure 2(b). These errors decrease as the rank r increases. In particular, Algorithm
4.1 with r = 3 and time step Δt = 10−4 produces numerical solutions that are
practically identical to that of the full-rank scheme (2.18). All low-rank solutions
eventually give accurate equilibrium approximations.
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Figure 3. Weighted L2 errors of the dynamical low-rank DG method (with
r = 1, 2, and 3) and the full-rank DG scheme relative to the exact solution
versus final time T , computed with one time step (with Δt = T ; left panel)
and two time steps (with Δt = T/2; right panel)

Fourth, we test the convergence of the dynamical low-rank DG solution and the
full-rank DG solution to the equilibrium with one time step Δt = T , and two time
steps Δt = T/2 for some final time T . The L2 error of the numerical solution
as a function of T is plotted in Figure 3. The results show that both algorithms
converge up to discretization error, and the convergence rates of both algorithms
to the equilibrium are equal to the total number of the time steps (i.e., ∝ T−1

for one step and ∝ T−2 for two steps), which is consistent with the theoretical
results of Theorem 4.13, regarding the low-rank scheme, and Proposition 2.4(ii),
regarding the full-rank scheme. The L2 error saturates for large T , when it becomes
dominated by the projection error of the equilibrium (around 10−12).

Finally, we test the convergence of the dynamical low-rank DG solution and the
full-rank DG solution to the equilibrium after n steps, using two different time step
sizes: Δt = 2 and Δt = 10. We show the L2 error between the numerical solution
and the discrete equilibrium fEq

h versus n in Figure 4. The results show that both
algorithms converge with convergence rates equal to the decay rate c = 1

1+Δtχmin
=

1
1+4Δt (i.e., ∝ 9−1 for Δt = 2 and ∝ 41−1 for Δt = 10), which is consistent
with the theoretical results of Theorem 4.13, regarding the low-rank scheme, and
Proposition 2.4(ii), regarding full-rank scheme.

Example 5.2. The purpose of this example is to demonstrate how the condition
given in Theorem 4.10 affects the convergence of the DLR-DG solution to the
equilibrium. We solve (2.2) with the same parameters as in Example 5.1, but with
Q1 polynomials and different initial conditions. The equilibrium is given in (5.1)
and is independent of the initial data.

To construct different initial conditions, we first prepare some basis functions.

(i) Let K0 = [UEq, Ũ0], and L0 = [EEq, Ẽ0], where UEq, EEq are given in (4.23),

and Ũ0 and Ẽ0 are rank-2 matrices, computed from Algorithm 4.1 using the
initial data from Example 5.1.

(ii) Perform a QR factorization to obtain K0 = Û0R0
U , where Û

0 = [UEq, Û0
2 , Û

0
3 ].

(iii) Perform an A1-weighted Gram–Schmidt decomposition to obtain L0=Ê0R0
E ,

where Ê0 = [EEq, Ê0
2 , Ê

0
3 ].
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Figure 4. Weighted L2 errors of the dynamical low-rank DG method (with
r = 1, 2, and 3) and the full-rank DG scheme relative to the exact solution
versus the total number of steps n, computed with (Δt = 2; left panel) and
(Δt = 10; right panel). In both panels, we compare the numerical results with
the predicted decay rate c = 1

1+Δtχmin
= 1

1+4Δt .

(iv) Generate Ǔ =
UEq+Û0

2

‖UEq+Û0
2 ‖

and Ě =
EEq+Ê0

2

‖EEq+Ê0
2‖A1

.

(v) Perform an Aχ-weighted Gram–Schmidt decomposition to obtain L0=Ẽ0R̃0
E ,

where Ẽ0 = [ẼEq, Ẽ0
2 , Ẽ

0
3 ]. Then perform an A1-weighted Gram–Schmidt de-

composition to obtain [Ẽ0
2 , Ẽ

0
3 ]=[Ē0

2 , Ē
0
3 ]R̄

0
E . Here, we expect ‖(Ẽ0

j )
�AχE

Eq‖
to be close to zero for j = 2, 3.

Test Case 5.2-1. We use these different matrices to construct the various initial
conditions given in the second and third rows of Table 1, with S0 = 1. We solve
(2.2) with rank-1 initial conditions given in Table 1, using Algorithm 4.1 with r = 1,
Q1 polynomials, and a mesh size of Nμ = Nε = 160. We show the one time step
(Δt = T ) convergence of the dynamical low-rank DG solution to the equilibrium
in Figure 5(a). In Table 1, we show the initial basis U0 and E0, the values in
(4.29) and (4.33), whether the assumptions of Theorem 4.10 are satisfied (�) or
not (�), and whether the scheme converges to the equilibrium (C) or not (NC). For
Cases (a)-(c) in Table 1, the conditions for convergence in Theorem 4.10 are not
satisfied, and the corresponding solution in Figure 5(a) does not converge to the
equilibrium. Case (d) is a special case that is addressed in Remark 4.9. Specifically,
‖(EEq)�AχP

χ
E0‖A1

is zero (to algorithmic precision) and hence does not satisfy the

associated condition in Lemma 4.8. However, because
∥∥PU0UEq

∥∥ = 1, the corre-
sponding numerical solution in Figure 5(a) still converges to the equilibrium with
a first-order convergence rate. Cases (e)-(f) satisfy the conditions of Theorem 4.10,
and, as expected, the corresponding numerical solutions in Figure 5(a) converge
to the equilibrium solution with a first-order convergence rate. All these results
indicate that the conditions given in Theorem 4.10, or Remark 4.9, are sufficient to
determine the convergence of the one-step DLR-DG solution to the equilibrium.

Test Case 5.2-2. Though the conditions for convergence in Theorem 4.10 are not
satisfied for Cases (a)-(c), the initial bases can be manually adjusted to yield a
convergent algorithm. In the following, we take Case (a) in Table 1 as an example
and show how to modify Algorithm 4.1 such that the solution converges to the
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Table 1. Initial bases for Algorithm 4.1 used in Test Case 5.2-1, the values
for the conditions in (4.29) and (4.33), whether the conditions of Theorem 4.10
are satisfied (�) or not (�), and the observed numerical behavior: Convergence
(C) or no convergence (NC)

Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

U0 Û0
2 Û0

2 Ǔ UEq Ǔ UEq

E0 Ē0
2 EEq Ē0

2 Ē0
2 Ě EEq

∥
∥PU0UEq

∥
∥ 0 0

√
2/2 1

√
2/2 1

‖(EEq)�AχP
χ

E0‖A1 1.7699e-15 1 1.7699e-15 1.7699e-15 0.7119 1

Theorem 4.13 � � � �(Remark 4.9) � �

Figure 5(a) NC NC NC C C C

102 104 106
10-8

10-6

10-4

10-2

100

(a) Example 5.2 Test Case 5.2-1

102 104 106
10-6

10-4

10-2

(b) Example 5.2 Test Case 5.2-2

Figure 5. The weighted L2 errors between the dynamical low-rank DG so-
lution and the equilibrium solution based on Q1 polynomials and Nμ = Nε =
160

equilibrium. (Similar modifications can be applied to Case (b) and Case (c).) To
achieve convergence, we increase the rank to r = 2 and append the basis such that
the conditions in Theorem 4.10 or Remark 4.9 are satisfied. Let x and y be scalar
parameters (not both zero), and define the functions

(5.3) U⊥(x, y) :=
xUEq + yÛ0

3

‖xUEq + yÛ0
3 ‖

and E⊥(x, y) :=
xEEq + yĒ0

3

‖xEEq + yĒ0
3‖A1

.

Then {Û0
2 , U⊥(x, y)} and {Ē0

2 , E⊥(x, y)} are orthonormal and A1-orthonormal
bases, respectively.

We use U⊥ and E⊥ to generate different initial bases for Algorithm 4.1; these are
listed as Cases (a1)-(a3) in Table 2. Case (a4) is different: we randomly generate
the basis functions by calling randn((k + 1)N ,1) in Matlab and apply the QR
decomposition followed by an A1-weighted Gram–Schmidt decomposition to obtain
the random basis functions Urand and Erand, respectively. We set S0 = diag(1, 0),
so that the initial matrix F 0 is unchanged after the basis enrichment.

The results are shown in Figure 5(b), from which we see that after adding an
additional component to the original bases, all of the initial conditions satisfy the
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Table 2. Modified bases and the corresponding values for the condition in
(4.29) and (4.33)

Case (a1) Case (a2) Case (a3) Case (a4)

U0 [Û0
2 , U⊥(1, 1)] [Û0

2 , U⊥(1, 0)] [Û0
2 , U⊥(0.1, 10)] [Û0

2 , Urand]

E0 [Ē0
2 , E⊥(1, 1)] [Ē0

2 , E⊥(0, 1)] [Ē0
2 , U⊥(0.1, 10)] [Ē0

2 , Erand]
∥
∥PU0UEq

∥
∥ 0.7071 1 0.01 0.1601

‖(EEq)�AχP
χ

E0‖A1 0.7046 3.0119e-13 0.01 0.0869

conditions in Theorem 4.10, and consequently converge to the equilibrium. In
addition, we also repeated Case (a4) for more than 1000 times with different random
basis functions, and observed that all converged to the equilibrium. This is not
surprising as the probability of drawing a random vector that is orthogonal to the
equilibrium is very small.

6. Conclusions

In this paper, we have proposed a semi-implicit dynamical low-rank, discontinu-
ous Galerkin (DLR-DG) method for a space homogeneous kinetic equation with a
relaxation operator that models the emission and absorption of particles by a back-
ground medium. We have derived a weighted dynamical low-rank approximation
(DLRA) that is consistent with the matrix differential equation of the DG scheme.
A semi-implicit unconventional integrator (SIUI) is used to integrate the DLRA,
and we show that the solution is identical to the solution of a DLR-DG scheme in
a DLR-DG space. We have shown the well-posedness of the fully discrete DLR-DG
scheme and identified a sufficient condition on the time step size, together with con-
ditions on the DLR-DG basis, such that the distance between the DLR-DG solution
and the equilibrium solution decays geometrically with the number of time steps.
Numerical results show that the DLR-DG solution is comparable to the full-rank
DG solution and converges to the equilibrium solution when the bases satisfy the
conditions of the theory.

In future work, it would be interesting to apply the proposed DLR-DG method
to more general kinetic equations, e.g., that model scattering with a background.
Then, in addition to the properties stated in Proposition 2.4 for the kinetic equation
modeling emission and absorption, the conservation of particles in the scattering
process should be captured. It may be challenging for the proposed DLR-DG
scheme to conserve particles, but extensions inspired by ideas proposed in [5, 18]
may be fruitful. We will investigate this in future works.

Appendix A. Some useful matrix results

From Lemma A.1 to Lemma A.3, we assume that m, n, and r are some positive
integers satisfying r ≤ min{m,n}. If A ∈ R

n×n is a symmetric and positive definite
matrix, then Cholesky decomposition implies that there exists a nonsingular matrix
C ∈ Rn×n such that

(A.1) A = C�C.

Lemma A.1. For any matrices A ∈ Rm×r, B ∈ Rn×r, and D ∈ Rm×n,

(A.2)
(
AB�, D

)
F
=

(
B�, A�D

)
F
= (A,DB)F .
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Lemma A.2. Let a ∈ R and b ∈ R be constants satisfying 0 ≤ a ≤ b. Suppose
D ∈ Rn×n is a symmetric positive semi-definite matrix with eigenvalues {λi}ni=1

satisfying a ≤ λ1 ≤ · · · ≤ λn ≤ b. Then for any nonzero Z ∈ R
m×n,

(A.3) a ≤ (ZD,Z)F
(Z,Z)F

≤ b.

Proof. For any nonzero z ∈ Rn×1, the Rayleigh quotient satisfies

(A.4) a ≤ (Dz, z)

(z, z)
=

(z�D�, z�)

(z�, z�)
≤ b.

Set Z� = [z1, . . . , zm] where each zj ∈ R
n×1. Then

(A.5)
(ZD,Z)F
(Z,Z)F

=

∑m
j=1(Dzj , zj)∑m
j=1(zj , zj)

,

which gives (A.3) by applying (A.4) to each term in the sum of the numerator. �

Lemma A.3. Let A ∈ R
n×n be a symmetric positive definite matrix. Suppose

D ∈ Rn×n with eigenvalues {λi}ni=1 satisfying a ≤ λ1 ≤ · · · ≤ λn ≤ b. Then for
any Z ∈ Rm×n,

(A.6) 0 ≤ (ZD�A,ZD�)F ≤ b2(ZA,Z)F.

Proof. Let (λ, q) be an eigenpair of the matrix D so that Dq = λq. If q′ = Cq
for C given in (A.1), then CDC−1q′ = λq′, which implies that λ is also the
eigenvalue of the matrix CDC−1 and that the symmetric positive-definite matrix
(CDC−1)T (CDC−1) has an eigenvalue λ2 ∈ [0, b2]. Let Z ′ ∈ Rm×n be any matrix.
By Lemma A.2, we have

(A.7) 0 ≤ (Z ′(CDC−1)T (CDC−1), Z ′)F ≤ b2(Z ′, Z ′)F,

which can be reformulated as (A.6) by taking Z ′ = ZCT . �

Appendix B. Some useful algorithms

Motivated by [1], we introduce the generalized singular value decomposition
(GSVD) and the generalized QR factorization (GQR). Let Sn++ be the set of n× n
symmetric positive definite matrices.

Algorithm B.1 (Matrix square root). Input: A1 ∈ Sn++. Output: A
± 1

2
1 ∈ Sn++.

• Apply the eigen-decomposition (svd in MATLAB) to A1 and obtain

(B.1) A1 = ΦΛΦ�,

where Φ satisfies Φ�Φ = In and Λ = diag(λ1, . . . , λn) with λi > 0.

• Compute Λ± 1
2 = diag(λ

± 1
2

1 , . . . , λ
± 1

2
n ).

• Compute the symmetric matrix A
± 1

2
1 = ΦΛ± 1

2Φ�.

Algorithm B.1 gives

(B.2) A1 = A
1
2
1 (A

1
2
1 )

� = A
1
2
1A

1
2
1 , A

1
2
1A

− 1
2

1 = In.

Algorithm B.2 (GSVD). Input: F ∈ Rm×n, A
± 1

2
1 ∈ Sn++, r ≤ min{m,n}. Out-

put: U ∈ Rm×r, S ∈ Rr×r and E ∈ Rn×r.
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• Apply the SVD decomposition to FA
1
2
1 and obtain

(B.3) FA
1
2
1 = USÊ�,

where U satisfies

(B.4) U�U = Ir,

and Ê satisfies Ê�Ê = Ir.

• Compute E = A
− 1

2
1 Ê.

Algorithm B.2 gives the GSVD

(B.5) F = USET ,

where U satisfies (B.4) and E satisfies

(B.6) E�A1E = Ê�A
− 1

2
1 A1A

− 1
2

1 Ê = Ir.

Algorithm B.3 (GQR). Input: L ∈ R
n×r, A

± 1
2

1 ∈ S
n
++. Output: E ∈ R

n×r.

• Apply the QR decomposition to A
1
2
1L and obtain

(B.7) A
1
2
1L = ÊR,

where Ê satisfies Ê�Ê = Ir.

• Compute E = A
− 1

2
1 Ê.

Algorithm B.3 gives the generalized QR factorization

(B.8) L = ER,

where E also satisfies (B.6).

Appendix C. Technical proofs

In this section, we present the proofs to some lemmas. For any nonzero function
wh = X�(μ)WY (ε) ∈ Vh for some nonzero W ∈ Rm×n, let

(C.1) Rχ(wh) =
(χwh, wh; ε

2)Ω
(wh, wh; ε2)Ω

=
(WAχ,W )F
(WA1,W )F

=
‖W‖2Aχ

‖W‖2A1

.

Lemma C.1. Let m1 be an integer satisfying 1 ≤ m1 ≤ m. Then for any nonzero
matrix Z ∈ R

m1×n,

χmin ≤
‖Z‖2Aχ

‖Z‖2A1

≤ χmax.(C.2)

Therefore if λ is an eigenvalue of the matrix (Aχ)
−1A1 or A1(Aχ)

−1, then

(C.3) χ−1
max ≤ λ ≤ χ−1

min.

Proof. A consequence of Assumption 2.1 is that

(C.4) χmin ≤ Rχ(wh) ≤ χmax.

The inequality in (C.2) follows from setting wh = X�(μ)WY (ε) in (C.4), where
W� = [Z�, Z�

1 ] and Z1 = 0 ∈ R(m−m1)×n. Inverting (C.2) gives

(C.5) χ−1
max ≤

‖Z‖2A1

‖Z‖2Aχ

≤ χ−1
min for all nonzero Z ∈ R

m1×n.
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The inequalities in (C.3) follow immediately by setting Z� in (C.5) to be an eigen-
vector of (Aχ)

−1A1. �

C.1. Proof of Lemma 4.6. We will first need a rather technical lemma.

Lemma C.2. Let EEq ∈ Rn×1, BL = [b1 . . . , br] ∈ Rn×r, and l = [l1, . . . , lr] be
a nonzero vector, where bi ∈ R

n×1 and li ∈ R for i = 1, . . . , r. Assume that the
matrix

(C.6) Ln+1 =

[
l1E

Eq +
1

Δt
b1, · · · , lrEEq +

1

Δt
br

]
∈ R

n×r

has a decomposition Ln+1 = En+1Sn+1
L with En+1 =

[
En+1

1 , · · · , En+1
r

]
satisfying

(4.3). Then

(C.7) 1− ‖(EEq)�A1PEn+1‖2A1
= 1− ‖(En+1)�A1E

Eq‖2 ≤
‖B�

L ‖2A1

Δt2‖l‖2∞
.

Proof. As long as (4.3) holds, (C.7) is independent of the choice of basis for the span
of Ln+1. Hence without loss of generality, we assume a weighted Gram-Schmidt
decomposition:

(C.8) En+1
i =

Ln+1
i −

∑i−1
j=1

(
(Ln+1

i )�A1E
n+1
j

)
En+1

j√
(Ln+1

i )�A1L
n+1
i −

∑i−1
j=1

(
(Ln+1

i )�A1E
n+1
j

)2 ,
where Ln+1

i = liE
Eq + 1

Δtbi. Then

(C.9)

((EEq)�A1E
n+1
i )2

=

(
(EEq)�A1L

n+1
i −

∑i−1
j=1

(
(Ln+1

i )�A1E
n+1
j

)
(EEq)�A1E

n+1
j

)2

(Ln+1
i )�A1L

n+1
i −

∑i−1
j=1

(
(Ln+1

i )�A1E
n+1
j

)2
=

(
liξ

2
i + 1

Δtαi

)2
l2i ξ

2
i + 1

Δt (2liαi +
1
Δtγ

2
i )

,

where

(C.10)

αi = (EEq)�A1bi −
i−1∑
j=1

((EEq)�A1E
n+1
j )((En+1

j )�A1bi),

γi =

⎛⎝b�i A1bi −
i−1∑
j=1

(b�i A1E
n+1
j )2

⎞⎠
1
2

,

ξi =

⎛⎝(EEq)�A1E
Eq −

i−1∑
j=1

((EEq)�A1E
n+1
j )2

⎞⎠
1
2

=

⎛⎝1−
i−1∑
j=1

((EEq)�A1E
n+1
j )2

⎞⎠
1
2

are all nonnegative. We extend the orthonormal basis En+1
j from 1 ≤ j ≤ r to

1 ≤ j ≤ n. Then EEq and bi in (C.6) can be expressed in terms of the basis
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functions {En+1
j }nj=1 as

(C.11) EEq =

n∑
j=1

((EEq)�A1E
n+1
j )En+1

j , bi =

n∑
j=1

(b�i A1E
n+1
j )En+1

j ,

which implies

(C.12) γ2
i =

n∑
j=i

(b�i A1E
n+1
j )2, ξ2i =

n∑
j=i

((EEq)�A1E
n+1
j )2,

and

(C.13) αi =
n∑

j=i

((EEq)�A1E
n+1
j )((En+1

j )�A1bi).

Therefore, we have

(C.14) |αi| ≤

⎛⎝ n∑
j=i

(
(EEq)�A1E

n+1
j

)2⎞⎠
1
2
⎛⎝ n∑

j=i

(
(En+1

j )�A1bi
)2
)

⎞⎠
1
2

= ξiγi.

By (C.11) and (C.12), it follows that

(C.15) γ2
i ≤ b�i A1bi ≤ (B�

LA1, B
�
L )F = ‖B�

L ‖2A1
.

Meanwhile, the direct calculation gives

(C.16) ‖(En+1)�A1E
Eq‖2 =

r∑
j=1

((EEq)�A1E
n+1
j )2.

Choose i such that 1 ≤ i ≤ r and |li| = ‖l‖∞ := max1≤j≤r |lj |. We consider the
following cases.

Case 1. If liξ
2
i + 1

Δtαi = 0, that is ξ2i = − αi

Δtli
= |αi|

Δt|li| , then by (C.14),

(C.17) 0 ≤ ξi ≤
γi

Δt|li|
,

which together with (C.15) and (C.16) implies that
(C.18)

1− ‖(En+1)�A1E
Eq‖2 ≤ 1−

i−1∑
j=1

((EEq)�A1E
n+1
j )2 = ξ2i ≤ γ2

i

Δt2l2i
≤

‖B�
L ‖2A1

Δt2‖l‖2∞
.

Case 2. Now we consider liξ
2
i + 1

Δtαi �= 0.

Case 2.a. If ξi = 0, then

(C.19) 1− ‖(En+1)�A1E
Eq‖2 ≤ 1−

i−1∑
j=1

((EEq)�A1E
n+1
j )2 = ξ2i = 0.

Therefore, the inequality (C.7) holds.

Case 2.b. If ξi �= 0, we consider two cases:

Licensed to Univ of Texas at El Paso. Prepared on Sun Feb 16 22:34:28 EST 2025 for download from IP 129.108.202.16.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DLR-DG 1227

Case 2.b.i. If γi = 0, then by (C.14), αi = 0. By (C.9), ((EEq)�A1E
n+1
i )2 = ξ2i ,

which implies
(C.20)

1− ‖(En+1)�A1E
Eq‖2 ≤ 1−

i∑
j=1

((EEq)�A1E
n+1
j )2 = ξ2i − ((EEq)�A1E

n+1
i )2 = 0.

Therefore, the inequality (C.7) still holds.

Case 2.b.ii. If γi �= 0, by (C.14) there exists a parameter τ ∈ [−1, 1] such that

(C.21) αi = τγiξi.

Substituting (C.21) into (C.9) and rewriting yield

(C.22)

((EEq)�A1E
n+1
i )2 =ξ2i

(
liξi +

1
Δtτγi

)2(
liξi +

1
Δtτγi

)2
+ 1

(Δt)2 (1− τ2)γ2
i

=ξ2i − g(τ ) = 1−
i−1∑
j=1

((EEq)�A1E
n+1
j )2 − g(τ ),

where we have used (C.10) for the third equality and g : [−1, 1] → R is a non-
negative and differentiable function given by

(C.23) g(τ ) =
ξ2i

1
(Δt)2 (1− τ2)γ2

i(
liξi +

1
Δtτγi

)2
+ 1

(Δt)2 (1− τ2)γ2
i

.

We wish to maximize g on [−1, 1]. Since g(−1) = g(1) = 0, we solve for the
critical points τ∗ satisfying

(C.24) g′(τ ) =
− 2

(Δt)2 ξ
2
i γ

2
i

(
liξi +

1
Δtτγi

) (
τ liξi +

1
Δtγi

)
((

liξi +
1
Δtτγi

)2
+ 1

(Δt)2 (1− τ2)γ2
i

)2 = 0.

Since ξi �= 0 and
(
liξ

2
i + 1

Δtαi

)2
= ξ2i

(
liξi +

1
Δtτγi

)2 �= 0, it follows that liξi +
1
Δtτγi �= 0. Therefore, the only critical point for (C.24) is τ∗ = − γi

Δtliξi
∈ (−1, 1).

Plugging in τ∗ into (C.23) yields

(C.25) g(τ ) ≤ g

(
− γi
Δtliξi

)
=

γ2
i

Δt2l2i
.

Therefore (C.22), (C.25), and (C.15) imply
(C.26)

1− ‖(En+1)�A1E
Eq‖2 ≤ 1−

i∑
j=1

((EEq)�A1E
n+1
j )2 = g(τ ) ≤ γ2

i

Δt2l2i
≤

‖B�
L ‖2A1

Δt2‖l‖2∞
.

�

Next, we present the proof of Lemma 4.6.

Proof of Lemma 4.6. Start with (4.12b), which is equivalent to finding Ln+1 ∈
Rn×r such that for any LW ∈ Rn×r,

(C.27)
(
Un

(
DtL

n+1
)�

A1, U
nL�

W

)
F
=

(
G(Un(Ln+1)�), UnL�

W

)
F
.
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Set LW = (Aχ)
−1L′

W , where L′
W is arbitrary, into (C.27). Then use (4.21) for G,

and apply Lemma A.1:

(C.28)
((

DtL
n+1

)�
A1(Aχ)

−1, (L′
W )�

)
F
=
(
(Un)�F Eq − (Ln+1)�, (L′

W )�
)
F
.

Since L′
W is arbitrary, it follows that(
In +

1

Δt
(Aχ)

−1A1

)
Ln+1 = (F Eq)�Un +

1

Δt
(Aχ)

−1A1L
n

=

(
In +

1

Δt
(Aχ)

−1A1

)
(F Eq)�Un +

1

Δt
(Aχ)

−1A1

(
Ln − (F Eq)�Un

)
,

which gives

(C.29) Ln+1 = (F Eq)�Un +
1

Δt
BL,

where

(C.30)

BL := DL

(
Ln − (F Eq)�Un

)
∈ R

n×r,

DL :=

(
I +

1

Δt
(Aχ)

−1A1

)−1

(Aχ)
−1A1 ∈ R

n×n.

Because Un is orthogonal and Un(Ln)� = UnSn(En)� = F̂ n, it follows that

(C.31)
‖(Ln)� − (Un)�F Eq‖A1

= ‖F̂ n − Un(Un)�F Eq‖A1
≤ ‖F̂ n − F Eq‖A1

= ‖ε(f̂n
h − fEq

h )‖L2(Ω).

Any eigenvalue λDL
of the matrixDL can be expressed in terms of the corresponding

eigenvalue λ of (Aχ)
−1A1 as follows

(C.32) λDL
=

λ

1 + 1
Δtλ

=
1

1
λ + 1

Δt

.

Therefore, according to (C.3), λDL
satisfies

(C.33) 0 <
1

χmax +
1
Δt

≤ λDL
≤ 1

χmin +
1
Δt

<
1

χmin
.

Together, (C.31), (C.33), and Lemma A.3 imply that

(C.34) ‖B�
L ‖2A1

≤ 1

χ2
min

‖ε(f̂n
h − fEq

h )‖2L2(Ω).

Let SEq(UEq)�Un = [l1, . . . , lr] = l ∈ R1×r for scalars li (i = 1, . . . , r). Using (4.22),
(C.29) becomes

(C.35) Ln+1 = EEqSEq(UEq)�Un +
1

Δt
BL =

[
l1E

Eq +
1

Δt
b1, . . . , lrE

Eq +
1

Δt
br

]
,

where bi ∈ Rn (i = 1, . . . , r) are the column vectors of BL. Combining Lemma C.2
and the bound in (C.34) gives

(C.36) 1− ‖(En+1)�A1E
Eq‖2 ≤

‖B�
L ‖2A1

Δt2‖l‖2∞
≤

‖ε(f̂n
h − fEq

h )‖2L2(Ω)

Δt2‖l‖2∞χ2
min

.
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For l, it holds
(C.37)

‖l‖∞ = |SEq| ‖(Un)�UEq‖∞ ≥ |SEq| ‖(Un)�UEq‖√
r

=
|SEq|‖PUnUEq‖√

r
≥ β|SEq|√

r
,

where the first inequality follows from the norm equivalence, and the last inequality

follows from the assumption in (4.29). Thus, if Δt ≥
√
r

βδχmin
, the estimate (4.30)

holds.
The equality (4.31) follows from (C.36) when f̂n

h = fEq
h . �

C.2. Proof of Lemma 4.7. Similar to Lemma C.2, we prepare the following result.

Lemma C.3. Let UEq ∈ Rn×1, BK = [b1 . . . , br] ∈ Rm×r, and l = [l1, . . . , lr] be
a nonzero vector, where bi ∈ R

m×1 and li ∈ R for i = 1, . . . , r. Assume that the
matrix

(C.38) Kn+1 =

[
l1U

Eq +
1

Δt
b1, · · · , lrUEq +

1

Δt
br

]
∈ R

m×r

has a decomposition Kn+1 = Un+1Sn+1
K with Un+1 =

[
Un+1
1 , · · · , Un+1

r

]
satisfying

(4.3). Then

(C.39) 1− ‖PUn+1UEq‖2 = 1− ‖(Un+1)�UEq‖2 ≤ ‖BK‖2F
Δt2‖l‖2∞

.

For any E ∈ Rn×r satisfying E�A1E = Ir, because the term E�AχE will appear
frequently, we introduce the symmetric matrix

(C.40) B = E�AχE ∈ R
r×r,

for which we have the following results.

Lemma C.4. Let (λB, qB) be an eigenpair of B in (C.40). Then

(C.41) χmin ≤ λB =
(EqB)

�AχEqB
(EqB)�A1EqB

=
‖(EqB)

�‖2Aχ

‖(EqB)�‖2A1

≤ χmax.

Proof. If (λB, qB) is an eigenpair of B, then

(C.42) E�AχEqB = BqB = λBqB = λBE
�A1EqB.

Left-multiplying (C.42) by q�B and applying (C.2) with Z = (EqB)
� gives (C.41).

�

Lemma C.5. Let E ∈ Rn×r satisfy E�A1E = Ir, and recall the definition of Pχ
E

from (4.32). Then for any Z ∈ R�×n, 1 ≤ � ≤ m,

(C.43) ‖ZAχP
χ
E‖A1

≤
√

χmax

χmin
‖Z‖A1

.

Proof. Recall that Aχ is symmetric and positive definite, and thus can be decom-
posed as Aχ = C�

χ Cχ where Cχ is nonsingular. Let Dχ = CχEB−1, where B is
given in (C.40), and compute

(C.44) ‖ZAχP
χ
E‖A1

= ‖ZAχEB−1‖F ≤ ‖ZC�
χ ‖F‖CχEB−1‖ = ‖Z‖Aχ

‖Dχ‖.

Since ‖Dχ‖2 is the largest eigenvalue of D�
χDχ and

(C.45) D�
χDχ = (B−1)�E�C�

χ CχEB−1 = B−1BB−1 = B−1,
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then (C.41) implies ‖Dχ‖ ≤ χ
−1/2
min , which along with (C.44) and (C.2) yields (C.43).

�

Next, we present the proof of Lemma 4.7.

Proof of Lemma 4.7. The proof follows along the same lines as the proof of
Lemma 4.6. (4.12a) is equivalent to finding Kn+1 ∈ R

m×r such that for any
KW ∈ Rm×r,

(C.46)
(
DtK

n+1(En)�A1,KW (En)�
)
F
=

(
G(Kn+1(En)�),KW (En)�

)
F
.

Applying (4.21) and Lemma A.1 to (C.46) gives

(C.47)
(
DtK

n+1,KW

)
F
=

(
F EqAχE

n −Kn+1(En)�AχE
n,KW

)
F
.

Let KW = K′
W (Bn)−1 for any K′

W ∈ Rm×r, where Bn = (En)�AχE
n. Then

(C.48)
(
(DtK

n+1(Bn)−1,K′
W

)
F
=

(
F EqAχE

n(Bn)−1 −Kn+1,K′
W

)
F
.

Since K′
W in arbitrary, it follows that

(C.49) Kn+1 = F EqAχE
n(Bn)−1 +

1

Δt
BK,

where

(C.50)

BK := [b1, . . . , br] =
(
Kn − F EqAχE

n(Bn)−1
)
DK ∈ R

m×r,

DK := (Bn)−1

(
Ir +

(Bn)−1

Δt

)−1

∈ R
r×r.

Since Kn = UnSn, we can write

(C.51) Kn − F EqAχE
n(Bn)−1 =

(
F n − F Eq

)
AχE

n(Bn)−1.

By (C.51), Lemma A.2, Lemma C.5, and Lemma 3.1,
(C.52)

‖Kn − F EqAχE
n(Bn)−1‖F = ‖

(
F n − F Eq

)
AχP

χ
En‖A1

≤
√

χmax

χmin

∥∥F n − F Eq
∥∥
A1

=

√
χmax

χmin
‖ε(f̂n

h − fEq
h )‖L2(Ω).

Any eigenvalue λDK
of DK satisfies

(C.53) 0 <
1

χmax +
1
Δt

≤ λDK
≤ 1

χmin +
1
Δt

<
1

χmin
.

Then, by (C.52), (C.53), and Lemma A.3,

(C.54) ‖BK‖F ≤ 1

χmin

√
χmax

χmin
‖ε(f̂n

h − fEq
h )‖L2(Ω).

Let SEq(EEq)�AχE
n(Bn)−1 = [l1, . . . , lr] ∈ R1×r for scalars li (i = 1, . . . , r). By

(4.22) and (C.49),

(C.55)

Kn+1 = UEqSEq(EEq)�AχE
n(Bn)−1 +

1

Δt
BK

=

[
l1U

Eq +
1

Δt
b1, . . . , lrU

Eq +
1

Δt
br

]
,
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where bi ∈ Rm (i = 1, . . . , r) are the columns of BK. By Lemma C.3 and (C.54),

(C.56) 1− ‖(Un+1)�UEq‖2 ≤ ‖BK‖2F
Δt2‖l‖2∞

≤ χmax

Δt2‖l‖2∞χ3
min

‖ε(f̂n
h − fEq

h )‖2L2(Ω).

By the assumption (4.33) and the fact that

‖(Bn)−1(En)�AχE
Eq‖ = ‖(EEq)�AχP

χ
En‖A1

,

‖l‖∞ = |SEq| ‖(Bn)−1(En)�AχE
Eq‖∞ ≥ |SEq| ‖(EEq)�AχP

χ
En‖A1√

r
≥ α|SEq|√

r
.

(C.57)

Thus, if Δt ≥
√
rχ1/2

max

αδχ
3/2
min

, estimate (4.34) holds.

The equality (4.35) follows from (C.56) when f̂n
h = fEq

h . �
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