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Abstract
In this paper,wepresent several unconditionally energy-stable invariant energyquadra-
tization (IEQ) finite element methods (FEMs) with linear, first- and second-order
accuracy for solving both the Cahn-Hilliard equation and the Allen-Cahn equation.
For time discretization, we compare three distinct IEQ-FEM schemes that position the
intermediate function introduced by the IEQ approach in different function spaces:
finite element space, continuous function space, or a combination of these spaces.
Rigorous proofs establishing the existence and uniqueness of the numerical solution,
alongwith analyses of energy dissipation for both equations andmass conservation for
the Cahn-Hilliard equation, are provided. The proposed schemes’ accuracy, efficiency,
and solution properties are demonstrated through numerical experiments.
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1 Introduction

We focus on the application of invariant energy quadratization (IEQ) finite element
methods (FEMs) to gradient flows, specifically addressing the Cahn-Hilliard (CH)
equation [3],

∂t u = ∇ · (M(u)∇w) in � × (0, T ],
w = −ε2�u + F ′(u) in � × (0, T ],

∇u · nnn = 0, ∇w · nnn = 0 on ∂� × [0, T ],
u = u0 on � × {t = 0},

(1.1)

and the Allen-Cahn (AC) equation [1],

∂t u = ε2�u − F ′(u) in � × (0, T ],
∇u · nnn = 0 on ∂� × [0, T ],

u = u0 on � × {t = 0},
(1.2)

where � ⊆ Rd(d = 2, 3) is a bounded domain, ε is a positive parameter, M(u) ≥ 0
represents the mobility function, u0(x) is the initial data, and nnn refers to the unit
outward normal to the boundary ∂�, F(u) denotes the nonlinear bulk potential with
the two well-known potentials being the double well potential [13]

F(u) = 1

4
(u2 − 1)2, (1.3)

and the logarithmic Flory-Huggins potential [2, 3]

F(u) = θ

2
(u ln u + (1 − u) ln(1 − u)) + θc

2
u(1 − u), (1.4)

where θ, θc > 0 are physical parameters.
We consider the total free energy

E(u) =
∫

�

(
ε2

2
|∇u|2 + F(u)

)
dx . (1.5)

Let δ
δu E(u) be the variational derivative of the total free energy (1.5). Then the CH

(1.1) is endowed with a H−1-gradient flow structure ∂t u = ∇ · (M(u) δ
δu E(u)), guided

by the energy dissipation law

d

dt
E(u) = −

∫
�

M(u)|∇w|2 ≤ 0; (1.6)
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and the AC equation is endowed with the L2-gradient flow ∂t u = − δ
δu E(u), guided

by the energy dissipation law

d

dt
E(u) = −

∫
�

|∇w|2 ≤ 0. (1.7)

The gradient flows, represented by the CH problem (1.1) and the AC problem
(1.2), are inherently nonlinear, andmaking analytical solutions a challenging endeavor.
Given the significance of steady states in gradient flows, a particular focus is placed
on their study. Consequently, the development of precise, efficient, and energy-stable
algorithms becomes imperative, especially when aiming for accurate simulations over
extended periods. Ensuring adherence to energy dissipation laws, as expressed in (1.6)
or (1.7), emerges as a crucial consideration in formulating various numerical schemes
[2, 5, 11, 17, 18, 30, 31, 33, 39]. This adherence is pivotal for guaranteeing the accuracy
of long-time simulations.

The CH equation and the AC equation are semilinear parabolic equations with
a small parameter ε. Various space discretization methods have been proposed for
numerically solving these equations, including finite difference methods [8], spectral
methods [10], finite element methods [13, 14], and discontinuous Galerkin methods
[12, 27, 34, 40]. In this paper, our emphasis is on the finite element method, a high-
order space discretization technique rooted in the weak formulation of the gradient
flows (1.1) and (1.2). This method employs a finite element space composed of con-
tinuous piecewise polynomials for both trial and test spaces [9]. Another noteworthy
high-order numerical approach is the discontinuous Galerkin (DG) method [22–24],
wherein the discontinuousGalerkinfinite element space is characterized by completely
discontinuous piecewise polynomials.

An additional significant challenge in simulating gradient flows (1.1) and (1.2) lies
in effectivelymanaging the nonlinear term during time discretization. Variousmethod-
ologies have been proposed in the literature, such as the convex splitting approach
[5, 11, 35]. However, this method involves iterative techniques. Another approach is
the stabilization method [31, 36], where selecting a stabilization constant is crucial
for ensuring scheme stability. In recent developments, two noteworthy approaches
have emerged for tackling gradient flows: the invariant energy quadratization (IEQ)
approach [38, 43] and the scalar auxiliary variable (SAV) approach [29]. Importantly,
both methods are linear and do not use iterative techniques.

The SAV approach has been explored in conjunction with high-order spatial dis-
cretization methods, such as the finite element method [4, 21] and the discontinuous
Galerkin (DG) method [28, 37]. In contrast, research on the IEQ approximation with
high-order spatial discretization has predominantly focused on DG methods [25–27,
34]. Remarkably, there is limited research on the exploration of IEQ-FEM for gradient
flows.

Based on the idea in [38, 43], the IEQ approach for (1.1) and (1.2) is to introduce
an intermediate function U = √

F(u) + B, where B ≥ 0 is a constant ensuring the
validity of the new variableU , and F(u) represents the nonlinear bulk potential in the
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gradient flows (1.1) and (1.2). Consequently, the nonlinear term F ′(u) in the model
equations is substituted with

F ′(u) = H(u)U , ∂tU = 1

2
H(u)∂t u,

where H(u) := F ′(u)/
√
F(u) + B.

Motivated by various techniques employed for the intermediate function in DG
schemes [25–27, 34, 40], when coupled with the IEQ approach, this study delves into
and compares three distinct unconditionally energy-stable IEQ-FEMs. These are based
on different techniques in approximating the intermediate functionU . Specifically, the
nonlinear term F ′(un+1

h ) in thefirst order approximation is replaced by H(unh)�, where
unh ∈ Vh is the finite element approximation of u at time tn in the finite element space
Vh , and � is an approximation of U at time tn+1 in certain subspaces of C0(�).

Three of our main IEQ-FEMs can be stated non-technically as follows:

• The first method (Method 1) directly incorporates the approximation of the inter-
mediate functionU at tn+1 into the finite element space Vh ⊂ C0(�) and treats it
on par with other variables. The resulting fully discrete IEQ-FEM scheme implic-
itly updates the new variable, leading to an augmented linear system. While this
does not amplify the computational cost in the DG setting due to an element-by-
element matrix inverse used to eliminate the new variable, it does increase costs
in the FEM setting due to the global matrix inverse, specifically, the inversion of
the mass matrix.

• The second method (Method 2) situates the intermediate function in continu-
ous function space C0(�) rather than the finite element space Vh . This approach
facilitates independent and pointwise computation of the intermediate function,
resulting in a computationally efficientmethod. Since the intermediate function lies
outside the finite element space, the computed energy cannot be directly observed
numerically; it can only be approximated within the finite element space. Conse-
quently, the approximated energy may not consistently demonstrate energy decay,
but conditional energy decay is achievable. Notably, this condition performs well
in the FEM setting, but is less effective in the DG setting.

• The final method (Method 3), drawing inspiration from IEQ-DG schemes for the
Swift-Hohenberg equation [25, 27] and the CH equation [26, 40], first computes
the intermediate function in the continuous function space C0 and subsequently
projects it onto the finite element space Vh . Despite the additional projection step
compared to Method 2, this approach yields numerical solutions that are uncon-
ditionally energy-stable. It is noteworthy that this method proves effective in both
the FEM and DG settings.

The paper is organized as follows. In Section 2, we develop linearly uncondition-
ally energy stable fully discrete IEQ-FEM schemes for numerically solving the CH
equation. The corresponding existence and uniqueness of the numerical solutions are
rigorously proved as well as the property of energy dissipation. In Section 3, we extend
the proposed methods for the AC equation. In Section 4, several numerical examples
demonstrate the accuracy, efficiency, and stability of the proposed schemes for CH
and AC equations. We present concluding remarks in Section 5.
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2 IEQ-FEMs for the CH equation

In this section, we present the IEQ-FEMs for the CH (1.1). Let T be a quasi-uniform
triangulation of � = ∪N

i=1Ti with N being the total number of triangles Ti , and
Vh ⊂ H1(�) be the C0 Lagrange finite element space associated with T ,

Vh := {v ∈ C0(�) ∩ H1(�) : v|Ti ∈ Pk, ∀Ti ∈ T }, (2.1)

where Pk is the space of polynomials of degree no more than k. Now we are prepared
for the semi-discrete FEM scheme for the CH equation.

2.1 The semi-discrete FEM for the CH equation

The semi-discrete finite element scheme for the CH problem (1.1) is to find (uh, wh) ∈
Vh × Vh such that

(∂t uh, φ) = − A(M(uh);wh, φ), φ ∈ Vh, (2.2a)

(wh, ψ) =A(ε2; uh, ψ) + (
F ′(uh), ψ

)
, ψ ∈ Vh, (2.2b)

where the bilinear functional

A(a(x); q, v) =
∫

�

a(x)∇q · ∇vdx (2.3)

satisfies
A(a(x); v, v) ≥ inf

x∈�
a(x)|v|2H1(�)

, ∀v ∈ Vh . (2.4)

The initial data for uh is also chosen as

uh(x, 0) = �u0(x), (2.5)

here and in what follows the operator � denotes the L2 projection, i.e.,

∫
�

(�u0(x) − u0(x))φdx = 0, ∀φ ∈ Vh . (2.6)

The discrete free energy is represented by

E(uh) = 1

2
A(ε2; uh, uh) +

∫
�

F(uh)dx . (2.7)

Lemma 2.1 The semi-discrete finite element scheme (2.2) conserves the total mass

d

dt

∫
�

uhdx = 0, (2.8)
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and the solution satisfies the energy dissipation law

d

dt
E(uh) = −A(M(uh);wh, wh) ≤ 0, for all t > 0. (2.9)

Proof Choosing φ = 1 in (2.2), we obtain the total mass conservation (2.8). By setting
φ = wh in (2.2a) and ψ = ∂t uh in (2.2b), the resulting sum leads to (2.9). �

2.2 The IEQ reformulation

For time discretization, we mimic the IEQ approach introduced in [38]. Such time
discretization transforms F(uh) in the energy functional into a quadratic form through
an intermediate function,

U = √
F(uh) + B, (2.10)

for some constant B such that F(uh) + B > 0. Consequently, the total free energy
(2.7) can be reformulated as:

E(uh,U ) = 1

2
A(ε2; uh, uh) +

∫
�

U 2dx − B|�| = E(uh). (2.11)

By utilizing the intermediate function U , the nonlinear term F ′(uh) can be expressed
as

F ′(uh) = H(uh)U , (2.12)

where

H(w) = F ′(w)√
F(w) + B

. (2.13)

This allows us to update U by using

∂tU = 1

2
H(uh)∂t uh, (2.14)

subject to the initial data

U (x, 0) = √
F(u0(x)) + B. (2.15)

Substituting F ′(uh) in the semi-discrete FEM scheme (2.2) with (2.12), along with
(2.14), will lead to an augmented semi-discrete formulation. A crucial consideration
involves determining a function space to approximate the intermediate function U .
This choice will significantly influence the approximation of F ′(uh) in (2.2). Our goal
is to ensure that the numerical approximation aligns with the properties of the CH
equation while maintaining the computational efficiency.

In the upcoming subsection, we will address this consideration by discretizing the
augmented scheme using different function spaces for the intermediate functionU .We
will analyze the performance of the corresponding fully discrete IEQ-FEM schemes.
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2.3 First order fully discrete BDF1-IEQ-FEMs

In this section, we introduce three distinct fully discrete IEQ-FEMs. In all these
schemes, we explore first order backward differentiation (BDF1 for short). For n ≥ 0,
let unh ∈ Vh , wn

h ∈ Vh represent u(x, tn), w(x, tn), where tn = n�t and �t > 0 is
the time step.

2.3.1 Method 1 (BDF1-IEQ-FEM1)

First, we consider Uh(x, t) ∈ Vh in the finite element space to approximate U based
on the following relation

(∂tUh, τ ) = 1

2
(H(uh)∂t uh, τ ), ∀τ ∈ Vh, (2.16)

subject to the initial data

Uh(x, 0) = �
√
F(u0(x)) + B. (2.17)

More specifically, for n ≥ 0, letUn
h ∈ Vh representUh(x, tn). Given unh, w

n
h ,U

n
h ∈ Vh ,

the first order fully discreteBDF1-IEQ-FEM1 scheme is to find (un+1
h , wn+1

h ,Un+1
h ) ∈

Vh × Vh × Vh such that

(
un+1
h − unh

�t
, φ

)
= − A(M(unh);wn+1

h , φ), (2.18a)

(wn+1
h , ψ) =A(ε2; un+1

h , ψ) +
(
H(unh)U

n+1
h , ψ

)
, (2.18b)(

Un+1
h −Un

h

�t
, τ

)
=1

2

(
H(unh)

un+1
h − unh

�t
, τ

)
, (2.18c)

for any φ,ψ, τ ∈ Vh . The initial data (u0h,U
0
h ) is given by (2.5) and (2.17). It can be

verified that the following result holds.

Lemma 2.2 The first order fully discrete BDF1-IEQ-FEM1 scheme (2.18) admits a
unique solution (un+1

h , wn+1
h ,Un+1

h ) ∈ Vh × Vh × Vh for any �t > 0. The solution
unh satisfies the total mass conservation

∫
�

unhdx =
∫

�

u0hdx, (2.19)

for any n > 0. Additionally, it satisfies the energy dissipation law

E(un+1
h ,Un+1

h ) = E(unh,U
n
h ) − ‖Un+1

h −Un
h ‖2 − �t A(M(unh);wn+1

h , wn+1
h )

−1

2
A(ε2; un+1

h − unh, u
n+1
h − unh),
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independent of the time step �t .

The linear system for the BDF1-IEQ-FEM1 scheme (2.18) takes the form

⎛
⎝

1
�t G D1 0

−ε2D G −G1

− G1
2�t 0 G

�t

⎞
⎠

⎛
⎝ �un+1

�wn+1

�Un+1

⎞
⎠ =

⎛
⎝ �g1

�g2
�g3

⎞
⎠ . (2.20)

Here �un , �wn , �Un represent the coefficient vectors of the finite element approximations
unh, w

n
h ,U

n
h (we have abused the notation ). D and G are the stiffness matrix and the

mass matrix, respectively. D1 is the stiffness matrix with the weight M(unh), and G1
is the mass matrix with the weight H(unh). The vectors �g1, �g2, �g3 are given as

�g1 = 1

�t
G �un, �g2 = �0, �g3 = 1

�t

(
G �Un − 1

2
G1�un

)
.

Solving the linear system (2.20) at each step can be computationally expensive. To
mitigate this, an alternative approach is to reduce the dimension of the linear system
(2.20). Specifically, we express the third row of (2.20) as

�Un+1 = G−1
(

�t �g3 + 1

2
G1�un+1

)
. (2.21)

Therefore, the matrix (2.20) reduces to

( 1
�t G D1

−ε2D − 1
2G1G−1G1 G

) ( �un+1

�wn+1

)
=

( �g1
�g2 + G1G−1�t �g3

)
. (2.22)

To solve the reduced linear system (2.22), it is essential to evaluate the inverse of the
mass matrix, G−1. In the DG setting, the matrix G adopts a diagonal block structure,
and computing its inverse G−1 does not incur additional computational complexity.
However, in the finite element framework, the matrix G lacks this local property,
leading to a noticeable increase in computational cost when computing G−1. This
computational burden makes the BDF1-IEQ-FEM1 scheme relatively expensive.

2.3.2 Method 2 (BDF1-IEQ-FEM2)

An alternative approach is to preserve the intermediate function U (x, t) within the
continuous function space C0(�), with its evolution governed by (2.14). More specif-
ically, for n ≥ 0, letUn representU (x, tn). Given unh, w

n
h ∈ Vh andUn ∈ C0(�), the
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first order fully discrete BDF1-IEQ-FEM2 scheme is to find (un+1
h , wn+1

h ) ∈ Vh × Vh
and Un+1 ∈ C0(�) such that

(
un+1
h − unh

�t
, φ

)
= − A(M(unh);wn+1

h , φ), (2.23a)

(wn+1
h , ψ) =A(ε2; un+1

h , ψ) +
(
H(unh)U

n+1, ψ
)

, (2.23b)

Un+1 −Un

�t
=1

2
H(unh)

un+1
h − unh

�t
, (2.23c)

for any φ,ψ ∈ Vh . The initial data (u0h,U
0) is given by (2.5) and (2.15).

Reformulating (2.23c) gives

Un+1 = Un + 1

2
H(unh)(u

n+1
h − unh). (2.24)

PluggingUn+1 into (2.23b) yields a system expressed solely in terms of (un+1
h , wn+1

h ),

(
un+1
h − unh

�t
, φ

)
= −A(M(unh);wn+1

h , φ), (2.25a)

(wn+1
h , ψ) = A(ε2; un+1

h , ψ) + (
H(unh)U

n, ψ
) + 1

2
((H(unh))

2un+1
h , ψ)

− 1

2
((H(unh))

2unh, ψ). (2.25b)

The first order fully discrete BDF1-IEQ-FEM2 scheme (2.23) is equivalent to the
system formed by (2.25) and (2.24). Here one can first obtain (un+1

h , wn+1
h ) from

(2.25), and then obtain Un+1 by (2.24) or (2.23c). Compared with the BDF1-IEQ-
FEM1 scheme (2.18), the scheme (2.23) can avoid the need to solve a large coupled
system or compute inverse matrices. Therefore, the BDF1-IEQ-FEM2 scheme is com-
putationally more econmomical.

Similar to the BDF1-IEQ-FEM1 scheme, the following result holds.

Theorem 2.1 The first-order fully discrete BDF1-IEQ-FEM2 scheme (2.23) produces
a unique solution (un+1

h , wn+1
h ,Un+1) ∈ Vh × Vh × C0(�) for any �t > 0. The

solution unh also satisfies total mass conservation (2.19) for any n > 0. Additionally,
it satisfies the energy dissipation law:

E(un+1
h ,Un+1) =E(unh,U

n) − ‖Un+1 −Un‖2

− �t A(M(unh);wn+1
h , wn+1

h ) − 1

2
A(ε2; un+1

h − unh, u
n+1
h − unh),

(2.26)
independent of the time step �t .
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Proof We begin by establishing the existence and uniqueness of the solution. Since the
scheme (2.23) is equivalent to the system (2.25) along with (2.24), they share the same
existence and uniqueness of the solution. As (2.25) represents a finite-dimensional
linear system, the existence of the solution is equivalent to its uniqueness. Now, assume
that the linear system (2.25) has two solutions, and denote their difference at tn+1 by
(ũn+1

h , w̃n+1
h ). This leads to the following system:

(
ũn+1
h

�t
, φ

)
= − A(M(unh); w̃n+1

h , φ), (2.27a)

(w̃n+1
h , ψ) =A(ε2; ũn+1

h , ψ) + 1

2
((H(unh))

2ũn+1
n , ψ). (2.27b)

Taking φ = �tw̃n+1
h and ψ = ũn+1

h in (2.27) yields

A(ε2; ũn+1
h , ũn+1

h ) + 1

2
((H(unh))

2ũn+1
n , ũn+1

n ) + �t A(M(unh); w̃n+1
h , w̃n+1

h ) = 0,

which implies

ε2|ũn+1
h |2H1(�)

+ 1

2
‖H(unh)ũ

n+1
n ‖2 + �t min

x∈�
M(unh)|w̃n+1

n |2H1(�)
≤ 0.

Consequently, we find that ũn+1
h = const and w̃n+1

h = const. From (2.27a), we have

(
ũn+1
h , φ

)
= 0, φ ∈ Vh,

which implies ũn+1
h = 0. By (2.27b), this also leads to w̃n+1

h = 0. These establish the
existence and uniqueness of the solution for the system (2.25). SinceUn+1 is uniquely
determined by un+1

h from (2.24) or (2.23c), the scheme (2.23) admits a unique solution.
By setting φ = 1 in (2.23a), we obtain the mass conservation (2.19).
Finally, to demonstrate energy stability (2.26), we select φ = �twn+1

h , ψ =
−(un+1

h − unh) in (2.23ab). Taking the L2 inner product of (2.23c) with 2�tUn+1,
the summation of (2.23) upon regrouping gives:

−�t A(M(unh);wn+1
h , wn+1

h ) =A(ε2; un+1
h , un+1

h − unh) + 2(Un+1 −Un ,Un+1)

= 1

2

(
A(ε2; un+1

h , un+1
h ) − A(ε2; unh , unh) + A(ε2; un+1

h − unh , u
n+1
h − unh)

)

+ (‖Un+1‖2 − ‖Un‖2 + ‖Un+1 −Un‖2) ,

which establishes the energy stability (2.26). �
Remark 2.1 In Method 1, the intermediate function Un+1

h ∈ Vh is typically solved
using the coupled system (2.18) or (2.20). However, both Method 1 and Method 2 can
eliminate the intermediate function Un+1

h ∈ Vh or Un+1 ∈ C0(�) in certain ways to
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obtain a linear system in terms of (un+1
h , wn+1

h ) ∈ Vh × Vh , updating the intermediate
function separately. Due to the different function spaces of the intermediate func-
tions, the reduction in Method 1 requires evaluating the inverse of the mass matrix,
G−1, as shown in (2.22), which is computationally even more expensive than solving
the coupled system. In contrast, the reduced (2.25) for Method 2 does not have this
limitation.

Remark 2.2 Method 2 provides a computationally efficient solution while preserv-
ing the energy dissipation law (2.26). However, the exact computation of the energy
E(unh,U

n) is unattainable, given that Un /∈ Vh . Instead, it can only be approximated
by E(unh,�Un), where � is an L2 projection onto the finite element space Vh . Here,
the approximated energy may not exhibit dissipation, as demonstrated in Example 4.3
for the CH equation.

Remark 2.3 While the energy E(unh,U
n) is unconditional stable, the approximated

energy E(unh,�Un) may exhibit only conditional stability. To ensure the energy dis-
sipation laws to hold also for the approximated energy, a natural strategy is tominimize
the error |E(unh,U

n)−E(unh,�Un)|. Let�En = |E(unh,U
n)−E(un−1

h ,Un−1)|. For
any n ≥ 1, if the condition

|E(unh,U
n) − E(unh,�Un)| ≤ 1

2
max{�En+1,�En}, (2.28)

is met, then the approximated energy E(unh,�Un) will satisfy an energy dissipa-
tion law. Minimizing the approximated energy error is equivalent to minimizing the
projection error ‖Un − �Un‖. Various numerical techniques, such as using refined
meshes and adjusting the constant B in the definition (2.10) with a larger value (as
recommended in Remark 4.1 in [27]), can effectively reduce this projection error.

Remark 2.4 In the FEM framework, Un ∈ H1(�), providing sufficient regularity to
minimize the projection error ‖Un − �Un‖ using the techniques outlined in Remark
2.3. This ensures the fulfillment of the condition (2.28). In contrast, a similar IEQ-DG
method was evaluated in the DG setting in [27, 40] for the CH equation. However,
numerical tests revealed that the DG solution does not adhere to the energy dissipation
law.

Remark 2.5 In reference to the techniques outlined in Remark 2.3, it is crucial to
assess their numerical performance. Refining meshes has proven effective in specific
scenarios, as demonstrated in Example 4.7. However, adopting an appropriately large
constant B appears to be effective across a broad spectrum of cases, although it is
important to note that the optimal constant may be problem-specific.

In addition to the techniques discussed in Remark 2.3, we propose a method that is
independent of the numerical setting to ensure unconditional energy dissipation.

2.3.3 Method 3 (BDF1-IEQ-FEM3)

It is natural to explore whether we can adapt the BDF1-IEQ-FEM2 scheme to preserve
its accuracy, achieve computational efficiency, and ensure the numerical satisfaction
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of the energy dissipation law with the computed energy E(unh,�Un). Essentially, this
entails transforming the intermediate functionUn into a representation inVh ⊂ C0(�).
Motivated by the techniques for the IEQ-DG method [25–27, 40], we introduce the
following modified IEQ-FEM scheme.

Consider unh, w
n
h ∈ Vh and Un ∈ C0(�), the modified first-order fully discrete

scheme, referred to as the BDF1-IEQ-FEM3 scheme, seeks to find (un+1
h , wn+1

h ) ∈
Vh × Vh and Un+1 ∈ C0(�) such that for ∀φ,ψ ∈ Vh ,

(
un+1
h − unh

�t
, φ

)
= − A(M(unh);wn+1

h , φ), (2.29a)

(wn+1
h , ψ) =A(ε2; un+1

h , ψ) +
(
H(unh)U

n+1, ψ
)

, (2.29b)

Un
h =�Un, (2.29c)

Un+1 −Un
h

�t
=1

2
H(unh)

un+1
h − unh

�t
, (2.29d)

subject to the initial data (u0h,U
0) given by (2.5) and (2.15).

Note that (2.29d) can be reformulated as

Un+1 = Un
h + 1

2
H(unh)(u

n+1
h − unh). (2.30)

Plugging (2.30) into (2.29b) gives the linear system

(
un+1
h − unh

�t
, φ

)
= −A(M(unh);wn+1

h , φ), (2.31a)

(wn+1
h , ψ) = A(ε2; un+1

h , ψ) + (
H(unh)U

n
h , ψ

) + 1

2
((H(unh))

2un+1
h , ψ)

− 1

2
((H(unh))

2unh, ψ). (2.31b)

Now, the BDF1-IEQ-FEM3 scheme (2.29) can be equivalently expressed as the
linear system (2.31) along with (2.29cd). Solving scheme (2.29) involves first solving
(un+1

h , wn+1
h ) from (2.31) and then solvingUn+1 orUn+1

h from (2.29cd). In addition,
the following result holds.

Theorem 2.2 The BDF1-IEQ-FEM3 scheme (2.29) admits a unique solution (un+1
h ,

wn+1
h ) ∈ Vh and Un+1 ∈ C0(�) for any �t > 0. The solution unh also satisfies total

mass conservation (2.19) for any n > 0. Additionally, it satisfies the energy dissipation
law:

E(un+1
h ,Un+1

h ) ≤E(un+1
h ,Un+1) = E(unh,U

n
h ) − ‖Un+1 −Un

h ‖2

− �t A(M(unh); wn+1
h , wn+1

h ) − 1

2
A(ε2; un+1

h − unh, u
n+1
h − unh),

(2.32)
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independent of the time step �t .

In (2.32), the inequality arises due to the property that the L2 projection is a contraction
mapping. The subsequent steps of the proof closely resemble those in Theorem 2.1.

Remark 2.6 In contrast to Method 1 (2.18), bothMethod 2 (2.23) andMethod 3 (2.29)
avoid the need to solve a large coupled system or computing an inverse matrix. How-
ever, we would ascertain that Method 2 and Method 3 are comparable. Method 2 is
straightforward to implement. Though its approximated energy in Vh is only con-
ditionally dissipative, as discussed in Remarks 2.2-2.4; however, it stands our as
computationally most efficient. Similarly, Method 3 is also easy to implement. While
Method 3 entails an additional projection step compared to Method 2, it guarantees
unconditional energy dissipation, directly computable in Vh .

2.4 Second order BDF2-IEQ-FEMs for the CH equation

In this subsection we present IEQ-FEMs based on the second-order backward time-
differentiation formula (BDF2), demonstrating numerical stability for both the double
well and the logarithmic Flory-Huggins potentials.

In contrast, the Crank-Nicolson (CN) time discretization exhibits high-order accu-
racy for the CH equation with a double well potential, but instability occurs with the
logarithmic Flory-Huggins potential. Please note that this phenomenon has also been
observed for the IEQ-DG schemes [26, 40].

Therefore, we present three stable fully discrete second order backward differenti-
ation formula (BDF2) IEQ-FEMs for the CH (1.1) by approximating the intermediate
function U (x, t) in different function spaces. For these schemes, an explicit second
order approximation of the numerical solution at tn+1 using un−1

h and unh is given by

un,∗
h = 2unh − un−1

h . (2.33)

2.4.1 Method 1 (BDF2-IEQ-FEM1)

First, we use Uh(x, t) ∈ Vh in the finite element space to approximate U based on
(2.16). Given un−1

h , unh , U
n−1
h , Un

h ∈ Vh for n ≥ 1, the BDF2-IEQ-FEM1 scheme is
to find (un+1

h , wn+1
h ,Un+1

h ) ∈ Vh × Vh × Vh such that(
3un+1

h − 4unh + un−1
h

2�t
, φ

)
= − A(M(un,∗

h ); wn+1
h , φ), ∀φ ∈ Vh, (2.34a)

(wn+1
h , ψ) =A(ε2; un+1

h , ψ) +
(
H(un,∗

h )Un+1
h , ψ

)
, ∀ψ ∈ Vh, (2.34b)

(
3Un+1

h − 4Un
h +Un−1

h

2�t
, τ

)
=

(
1

2
H(un,∗

h )
3un+1

h − 4unh + un−1
h

2�t
, τ

)
, ∀τ ∈ Vh . (2.34c)

Here, the initial data (u0h,U
0
h ) is given by (2.5) and (2.17), and

u−1
h = u0h, U−1

h = U 0
h . (2.35)
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For scheme (2.34), the following results hold.

Lemma 2.3 The second order fully discrete BDF2-IEQ-FEM1 scheme (2.34) admits
a unique solution (un+1

h , wn+1
h ,Un+1

h ) ∈ Vh × Vh × Vh for any �t > 0. The solution
unh satisfies the total mass conservation (2.19) for any n > 0. Additionally, it satisfies
the energy dissipation law

Ēn+1
h = Ēn

h − �t A(M(un,∗
h );wn+1

h , wn+1
h )

−1

4
A(ε2; un+1

h − un,∗
h , un+1

h − un,∗
h ) − 1

2
‖Un+1

h −Un,∗
h ‖2,

independent of time step �t , where

Ēn
h = 1

2
(E(unh,U

n
h ) + E(un,∗

h ,Un,∗
h )),

with Un,∗
h = 2Un

h −Un−1
h and un,∗

h is given in (2.33).

Similar to the BDF1-IEQ-FEM1 scheme (2.18) , the scheme (2.34) can either be
solved by the enlarged linear systemwith the three unknowns, or by a simplified linear
system with computing the inverse of the mass matrix.

2.4.2 Method 2 (BDF2-IEQ-FEM2)

To save the computational cost, we move to retain the intermediate function U (x, t)
in continuous function space C0(�) with the evolution determined by (2.14). Given
un−1
h , unh ,U

n−1,Un for n ≥ 1, theBDF2-IEQ-FEM2 scheme is to find (un+1
h , wn+1

h ) ∈
Vh × Vh and Un+1 ∈ C0(�) such that

(
3un+1

h − 4unh + un−1
h

2�t
, φ

)
= − A(M(un,∗

h );wn+1
h , φ), ∀φ ∈ Vh, (2.36a)

(wn+1
h , ψ) =A(ε2; un+1

h , ψ) +
(
H(un,∗

h )Un+1, ψ
)

, ∀ψ ∈ Vh,

(2.36b)

3Un+1 − 4Un +Un−1

2�t
=1

2
H(un,∗

h )
3un+1

h − 4unh + un−1
h

2�t
. (2.36c)

Here, the initial data (u0h,U
0) is given by (2.5) and (2.15), and

u−1
h = u0h, U−1 = U 0. (2.37)

By (2.36c), we have

Un+1 = 1

2
H(un,∗

h )un+1
h +

(
4Un −Un−1

3
− 1

2
H(un,∗

h )
4unh − un−1

h

3

)
. (2.38)
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Plugging Un+1 in (2.38) into (2.36b) gives a linear system in terms of un+1
h , wn+1

h ,

(
3un+1

h − 4unh + un−1
h

2�t
, φ

)
= −A(M(un,∗

h );wn+1
h , φ),

(wn+1
h , ψ) = A(ε2; un+1

h , ψ) + 1

2

(
(H(un,∗

h ))2un+1
h , ψ

)

+ 1

3

(
H(un,∗

h )(4Un −Un−1), ψ
)

− 1

6

(
(H(un,∗

h ))2(4unh − un−1
h ), ψ

)
.

(2.39)

The scheme (2.36) is equivalent to the system (2.39) with (2.38). The system (2.39)
is a linear system in terms of (un+1

h , wn+1
h ), so that the scheme (2.36) can also avoid

solving a linear system coupled with unknownUn+1. Upon solving un+1
h , wn+1

h from
(2.39), we can obtain Un+1 by (2.38), or (2.36c).

Then we have the following result.

Theorem 2.3 The second order fully discrete BDF2-IEQ-FEM2 scheme (2.36) admits
a unique solution (un+1

h , wn+1
h ) ∈ Vh and Un+1 for any �t > 0, and the solution unh

satisfies the total mass conservation (2.19) for any n > 0, and the energy dissipation
law

Ēn+1 = Ēn − �t A(M(un,∗
h );wn+1

h , wn+1
h ) − 1

4
A(ε2; un+1

h − un,∗
h , un+1

h − un,∗
h )

−1

2
‖Un+1 −Un,∗‖2, (2.40)

independent of time step �t , where

Ēn = 1

2
(E(unh,U

n) + E(un,∗
h ,Un,∗)),

with Un,∗ = 2Un −Un−1 and un,∗
h given in (2.33).

Note that Ēn in Theorem 2.3 can not be computed exactly and it can only approx-
imated by

Ēn
h = 1

2
(E(unh,�Un) + E(un,∗

h ,�Un,∗)), (2.41)

withUn,∗ = 2Un −Un−1 and un,∗
h given in (2.33). Numerically, the computed energy

Ēn
h may not be dissipating. To guarantee the computed energy dissipation, we further

introduce another IEQ-FEM scheme.
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2.4.3 Method 3 (BDF2-IEQ-FEM3)

To modify the BDF2-IEQ-FEM2 scheme (2.36) such that the computed numerical
solution satisfies the energy dissipation law,we provide theBDF2-IEQ-FEM3 scheme,
which is to find (un+1

h , wn+1
h ) ∈ Vh × Vh and Un+1 ∈ C0(�) such that

(
3un+1

h − 4unh + un−1
h

2�t
, φ

)
= − A(M(un,∗

h );wn+1
h , φ), ∀φ ∈ Vh, (2.42a)

(wn+1
h , ψ) =A(ε2; un+1

h , ψ) +
(
H(un,∗

h )Un+1, ψ
)

, ∀ψ ∈ Vh,

(2.42b)

Un
h =�Un, (2.42c)

3Un+1 − 4Un
h +Un−1

h

2�t
=1

2
H(un,∗

h )
3un+1

h − 4unh + un−1
h

2�t
. (2.42d)

Here, the initial data (u0h,U
0) is given by (2.5) and (2.15), and

u−1
n = u0h, U−1

h = U 0
h .

The following result holds for the scheme (2.42).

Theorem 2.4 The second order fully discrete BDF2-IEQ-FEM3 scheme (2.42) admits
a unique solution (un+1

h , wn+1
h ) ∈ Vh andUn+1 ∈ C0(�) for any�t > 0. The solution

unh satisfies the total mass conservation (2.19) for any n > 0. Additionally, it satisfies
the energy dissipation law

Ē(un+1
h ,Un+1

h ; un+1,∗
h ,Un+1,∗

h ) ≤ Ē(un+1
h ,Un+1; un+1,∗

h ,Un+1,∗
h ) = Ē(unh,U

n; un,∗
h ,Un,∗

h )

− �t A(M(un,∗
h ); wn+1

h , wn+1
h ) − 1

4
A(ε2; un+1

h − un,∗
h , un+1

h − un,∗
h ) − 1

2
‖Un+1 −Un,∗‖2,

(2.43)
independent of time step �t , where

Ē(vn, V n; vn,∗, V n,∗) = 1

2
(E(vn, V n) + E(vn,∗, V n,∗)),

with V n,∗ = 2V n − V n−1 for V = U ,Uh and un,∗
h being given in (2.33).

Compared with the BDF2-IEQ-FEM2 scheme (2.36), the BDF2-IEQ-FEM3
scheme (2.42) includes an additional projection step (2.42c). This extra computational
cost is traded for the numerical satisfaction of the energy dissipation law.
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3 IEQ-FEMs for the AC equation

In this section, we extend the IEQ-FEMs to the Allen-Cahn (AC) (1.2), while contin-
uing to use the finite element space Vh defined in (2.1).

3.1 The semi-discrete finite element scheme

The semi-discrete finite element scheme for the AC (1.2) is to find uh ∈ Vh such that

(∂t uh, φ) = −A(ε2; uh, φ) − (
F ′(uh), φ

)
, ∀φ ∈ Vh, (3.1)

where the bilinear functional is given by (2.3). The initial data for uh is taken as
uh(x, 0) = �u0(x). Recall the free energy E(·) defined in (2.7), we have the following
result.

Lemma 3.1 The solution of the semi-discrete finite element scheme (3.1) satisfies the
energy dissipation law

d

dt
E(uh) = −‖∂t uh‖2 ≤ 0. (3.2)

Proof Setting φ = −∂t uh in (3.1), then the conclusion holds. �
Building upon the IEQ formulation presented in Section 2.2 and the IEQ-FEMs

outlined in Section 2.3 for the CH equation, depending on how to approximate the
intermediate function U (x, t), the semi-discrete scheme (3.1) can be equivalently
expressed in twoways, depending on how the intermediate functionU (x, t) is approx-
imated:

(i) Use Uh ∈ Vh to approximate U . The semi-discrete IEQ-FEM scheme is to find
(uh,Uh) ∈ Vh × Vh such that

(∂t uh, φ) = − A(ε2; uh, φ) − (H(uh)Uh, φ) , ∀φ ∈ Vh, (3.3a)

(∂tUh, ψ) =
(
1

2
H(uh)∂t uh, ψ

)
, ∀ψ ∈ Vh, (3.3b)

subject to the initial data

uh(x, 0) = �u0(x), Uh(x, 0) = �
√
F(u0(x)) + B. (3.4)

(ii) PreserveU in continuous function spaceC0(�). The IEQ-FEM scheme is to find
uh ∈ Vh and U (x, t) ∈ C0(�) such that

(∂t uh, φ) = − A(ε2; uh, φ) − (H(uh)U , φ) , ∀φ ∈ Vh, (3.5a)

∂tU =1

2
H(uh)∂t uh, (3.5b)

123



Numerical Algorithms

subject to the initial data

uh(x, 0) = �u0(x), U (x, 0) = √
F(u0(x)) + B. (3.6)

By taking φ = ∂t uh and ψ = 2Uh in (3.3) and summing (3.3a) and (3.3b), it
follows that the semi-discrete IEQ-FEM (3.3) satisfies the energy dissipation law,

d

dt
E(uh,Uh) = −‖∂t uh‖2 ≤ 0.

Similarly, by setting φ = ∂t uh in (3.5a), (3.5b), and taking the L2 inner product
with 2U , and by summing (3.5a) and (3.5b), we can establish that the semi-
discrete IEQ-FEM (3.5) adheres to the energy dissipation law:

d

dt
E(uh,U ) = −‖∂t uh‖2 ≤ 0.

Here, it’s important to note that U (x, t) /∈ Vh in scheme (3.5) unless H(uh) is a
constant.

3.2 BDF1-IEQ-FEMs

The selection of the space for approximating the intermediate function U (x, t) in the
semi-discrete IEQ-FEM schemes (3.3) and (3.5) gives rise to different fully discrete
IEQ-FEM schemes. For n ≥ 0, let unh ∈ Vh approximate u(x, tn), where tn = n�t
and �t > 0 is the time step. We denote the approximation of U (x, tn) by Un

h ∈ Vh
or Un ∈ C0(�). The choice of this approximation space significantly influences the
resulting numerical methods and their inherent properties.

3.2.1 Method 1 (BDF1-IEQ-FEM1)

Given (unh,U
n
h ) ∈ Vh × Vh , the first order BDF1-IEQ-FEM1 scheme based on the

semi-discrete FEM scheme (3.3) is to find (un+1
h ,Un+1

h ) ∈ Vh × Vh such that for
φ,ψ ∈ Vh ,

(
un+1
h − unh

�t
, φ

)
= − A(ε2; un+1

h , φ) −
(
H(unh)U

n+1
h , φ

)
, (3.7a)

(
Un+1
h −Un

h

�t
, ψ

)
=

(
1

2
H(unh)

un+1
h − unh

�t
, ψ

)
. (3.7b)
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Here, un+1
h ,Un+1

h constitute a coupled system, and the initial data is given by (3.4).
Similar to the CH equation, the linear system for the scheme (3.7) takes the form

( G
�t + ε2D G1

− G1
2�t

G
�t

) ( �un+1

�Un+1

)
=

( �g1
�g3

)
, (3.8)

with the notations �un , �Un , the matrices D, G, G1 and the vectors �g1, �g3 defined as
those in (2.20). One approach to solving the linear system for the scheme (3.8) is
direct, and the other approach is to reduce the matrix (3.8) to

(
G

�t
+ ε2D − 1

2
G1G

−1G1

)
· �un+1 = �g1 + G1G

−1�t �g3. (3.9)

Lemma 3.2 The first order fully discrete BDF1-IEQ-FEM1 scheme (3.7) admits a
unique solution (un+1

h ,Un+1
h ) ∈ Vh × Vh satisfying the energy dissipation law,

E(un+1
h ,Un+1

h ) = E(unh,U
n
h ) − 1

�t
‖un+1

h − unh‖2

−1

2
A(ε2; un+1

h − unh, u
n+1
h − unh) − ‖Un+1

h −Un
h ‖2. (3.10)

In the scheme (3.7), a similar challenge arises, reminiscent of the BDF1-IEQ-FEM
scheme for the CH equation. Specifically, the solution of the BDF1-IEQ-FEM scheme
(3.7) can be obtained either by solving the augmented linear systemwith twounknowns
or by utilizing a simplified linear system that involves computing the inverse of the
mass matrix, G−1.

3.2.2 Method 2 (BDF1-IEQ-FEM2)

Note that the intermediate function U (x, t) in the semi-discrete IEQ-FEM scheme
(3.5) is defined pointwise. For a given unh ∈ Vh and Un(x) ∈ C0(�), the first order
fully discrete BDF1-IEQ-FEM2 scheme seeks to find un+1

h ∈ Vh and Un+1 ∈ C0(�)

such that, for φ ∈ Vh ,

(
un+1
h − unh

�t
, φ

)
= − A(ε2; un+1

h , φ) −
(
H(unh)U

n+1, φ
)

, (3.11a)

Un+1 −Un

�t
=1

2
H(unh)

un+1
h − unh

�t
. (3.11b)

The initial data is given by (3.6).
By (3.11b), we can derive

Un+1 = Un + 1

2
H(unh)(u

n+1
h − unh). (3.12)
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Substituting Un+1 from (3.12) into (3.11a) gives the following equation in terms of
un+1
h ,

(
un+1
h − unh

�t
, φ

)
= −A(ε2; un+1

h , φ) − (
H(unh)U

n, φ
) − 1

2
(H(unh)

2un+1
h , φ)

+1

2
(H(unh)

2unh, φ). (3.13)

In this context, the system (3.11) can be considered equivalent to the system formed
by (3.12) and (3.13), where the unknowns in (3.13) involve only un+1

h . Consequently,
one can initially obtain un+1

h by solving (3.13). Subsequently, the evaluation of Un+1

from (3.12) becomes straightforward. Compared to the IEQ-FEM scheme (3.7) based
on the semi-discrete FEM scheme (3.3), the BDF1-IEQ-FEM2 scheme (3.11) elimi-
nates the need to solve a coupled linear system with double unknowns.

Theorem 3.1 Given unh ∈ Vh andUn ∈ C0(�), the first order fully discrete IEQ-FEM
scheme (3.11) admits a unique solution un+1

h ∈ Vh and Un+1 ∈ C0(�) satisfying the
energy dissipation law,

E(un+1
h ,Un+1) = E(unh,U

n) − 1

�t
‖un+1

h − unh‖2

−1

2
A(ε2; un+1

h − unh, u
n+1
h − unh) − ‖Un+1 −Un‖2, (3.14)

for any �t > 0.

Proof Wefirst prove the energy stability. By setting φ = un+1
h −unh in (3.11a), (3.11b),

taking L2 inner product with 2�tUn+1, and taking summation, we have

− 1

�t
‖un+1

h − unh‖2 =A(ε2; un+1
h , un+1

h − unh) + 2(Un+1 −Un,Un+1),

=1

2

(
A(ε2; un+1

h , un+1
h ) − A(ε2; unh, unh) + A(ε2; un+1

h − unh, u
n+1
h − unh)

)

+ (‖Un+1‖2 − ‖Un‖2 + ‖Un+1 −Un‖2) ,

which gives the energy dissipation law (3.14).
It is important to note that the scheme (3.11) shares the same solution as the

system formed by (3.12) and (3.13). As (3.13) constitutes a linear system in a finite-
dimensional space, the existence of the solution un+1

h is equivalent to its existence.
This, coupled with (3.12), further implies the existence and uniqueness of the solu-
tion for the scheme (3.11). Assuming that (3.13) has two solutions, we denote their
differences as ũn+1

h . This leads to the expression:

(
ũn+1
h

�t
, φ

)
= −A(ε2; ũn+1

h , φ) − 1

2
(H(unh)

2ũn+1
h , φ). (3.15)
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By taking φ = ũn+1
h in (3.15), it follows

1

�t
‖ũn+1

h ‖2 + ε2|ũn+1
h |2H1(�)

+ 1

2
‖H(unh)ũ

n+1
h ‖2 = 0,

which gives ũn+1
h = 0. Thus, it follows the existence and uniqueness of the scheme

(3.11). �
Remark 3.1 The scheme (3.11) is computationally cheap, but the computed energy
E(unh,U

n) can only be approximated by E(unh,�Un), which may not exhibit an
energy dissipation, as demonstrated by the counter-example given in Example 4.7
for the AC equation. Several numerical strategies, outlined in Remark 2.3, can be
employed to effectively manage the energy dissipation of E(unh,�Un).

Next, we introduce a methods that is independent of its numerical setting, while
ensuring energy dissipation.

3.2.3 Method 3 (BDF1-IEQ-FEM3)

Following the IEQ-DG schemes introduced in [25–27, 40] for the Swift-Hohenberg
equation and the CH equation, we introduce the first order fully discrete BDF1-IEQ-
FEM3 scheme, which aims to find un+1

h ∈ Vh and Un+1 ∈ C0(�) such that for
φ ∈ Vh ,

(
un+1
h − unh

�t
, φ

)
= − ε2A(un+1

h , ψ) −
(
H(unh)U

n+1, ψ
)

, (3.16a)

Un
h =�Un, (3.16b)

Un+1 −Un
h

�t
=1

2
H(unh)

un+1
h − unh

�t
. (3.16c)

The initial data is given by (3.6).
By (3.16c), we have

Un+1 = Un
h + 1

2
H(unh)(u

n+1
h − unh). (3.17)

Substituting Un+1 from (3.17) into (3.16a) gives

(
un+1
h − unh

�t
, φ

)
= −A(ε2; un+1

h , φ) − (
H(unh)U

n
h , φ

) − 1

2
(H(unh)

2un+1
h , φ)

+1

2
(H(unh)

2unh, φ). (3.18)

Note that the scheme (3.16) is equivalent to the system formed by (3.18) and (3.17).
Here, (3.18) is an equation concerning the solution un+1

h only. Similar to the BDF1-
IEQ-FEM2 scheme (3.11), the scheme (3.16) can also avoid the need to solve a coupled
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linear system with double unknowns. Moreover, the solution of (3.16) satisfies the
following result.

Theorem 3.2 Given unh ∈ Vh and Un ∈ C0(�), the first order fully discrete BDF1-
IEQ-FEM3 scheme (3.16) admits a unique solution un+1

h ∈ Vh and Un+1 ∈ C0(�)

satisfying the energy dissipation law,

E(un+1
h ,Un+1

h ) ≤E(un+1
h ,Un+1) = E(unh,U

n
h ) − 1

�t
‖un+1

h − unh‖2

− 1

2
A(ε2; un+1

h − unh, u
n+1
h − unh) − ‖Un+1 −Un

h ‖2.
(3.19)

The proof of Theorem 3.2 is similar to that of Theorem 3.1. The first inequality in
(3.19) is derived from the fact that L2 projection is a contraction operation.

3.3 Second order fully discrete CN-IEQ-FEMs

We discretize the semi-discrete IEQ-FEM schemes (3.3) and (3.5) by the second order
Crank-Nicolson (CN) time discretization.

We denote
vn+1/2 = (vn + vn+1)/2,

where v is a given function. For these schemes, an explicit second order approximation
of the numerical solution at tn+1/2 using un−1

h and unh is given by

un,∗
h = 3

2
unh − 1

2
un−1
h . (3.20)

where unh = uh(x, tn).
We first introduce the trivial IEQ-FEM schemes based on the semi-discrete IEQ-

FEM schemes (3.3) and (3.5).

3.3.1 Method 1 (CN-IEQ-FEM1)

Given unh andU
n
h , the second order fully discrete CN-IEQ-FEM1 scheme based on the

semi-discrete IEQ-FEM scheme (3.3) is to find (un+1
h ,Un+1

h ) ∈ Vh × Vh such that

(
un+1/2
h − unh

1
2�t

, φ

)
= − A(ε2; un+1/2

h , φ) −
(
H(un,∗

h )Un+1/2
h , φ

)
, ∀φ ∈ Vh,

(3.21a)(
Un+1/2
h −Un

h
1
2�t

, ψ

)
=

(
1

2
H(un,∗

h )
un+1/2
h − unh

1
2�t

, ψ

)
, ∀ψ ∈ Vh . (3.21b)

The initial data is given by (3.4). For the CN-IEQ-FEM1 scheme (3.21), the following
result holds.
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Lemma 3.3 Given unh ∈ Vh and Un ∈ Vh , the second order fully discrete CN-IEQ-
FEM1 scheme (3.21) admits a unique solution un+1

h ∈ Vh and Un+1
h ∈ Vh satisfying

the energy dissipation law,

E(un+1
h ,Un+1

h ) = E(unh,U
n
h ) − 1

�t
‖un+1

h − unh‖2, (3.22)

for any �t > 0.

3.3.2 Method 2 (CN-IEQ-FEM2)

Next, given unh ∈ Vh andUn ∈ C0(�), the second order CN-IEQ-FEM2 scheme based
on the semi-discrete IEQ-FEM scheme (3.5) is to find un+1

h ∈ Vh andUn+1 ∈ C0(�)

such that

(
un+1/2
h − unh

1
2�t

, φ

)
= − A(ε2; un+1/2

h , φ) −
(
H(un,∗

h )Un+1/2, φ
)

, ∀φ ∈ Vh,

(3.23a)

Un+1/2 −Un

1
2�t

=1

2
H(un,∗

h )
un+1/2
h − unh

1
2�t

. (3.23b)

The initial data is given by (3.6). For the CN-IEQ-FEM2 scheme (3.23), it holds the
following result.

Theorem 3.3 Given unh ∈ Vh and Un ∈ C0(�), the second order fully discrete CN-
IEQ-FEM2 scheme (3.23) admits a unique solution un+1

h ∈ Vh and Un+1 ∈ C0(�)

satisfying the energy dissipation law,

E(un+1
h ,Un+1) = E(unh,U

n) − 1

�t
‖un+1

h − unh‖2, (3.24)

for any �t > 0.

3.3.3 Method 3 (CN-IEQ-FEM3)

In this part, we present an IEQ-FEM scheme characterized by low computational cost,
ensuring that the resulting numerical solution satisfies the energy dissipation law.

123



Numerical Algorithms

Given unh ∈ Vh and Un ∈ C0(�), the second order CN-IEQ-FEM3 scheme is to
find un+1

h ∈ Vh and Un+1 ∈ C0(�) such that

(
un+1/2
h − unh

1
2�t

, φ

)
= − A(ε2; un+1/2

h , φ) −
(
H(un,∗

h )Ū n+1/2, φ
)

, ∀φ ∈ Vh,

(3.25a)

Un
h =�Un, (3.25b)

Ū n+1/2 −Un
h

1
2�t

=1

2
H(un,∗

h )
un+1/2
h − unh

1
2�t

, (3.25c)

where

Ū n+1/2 = 1

2
(Un+1 +Un

h ). (3.26)

The initial data is given by (3.6).
By (3.25b), we have

Ū n+1/2 = Un
h + 1

2
H(un,∗

h )(un+1/2
h − unh). (3.27)

Plugging Ū n+1/2 in (3.27) into (3.25a), we obtain a linear system in terms of un+1
h ,

(
un+1/2
h − unh

1
2�t

, φ

)
= − A(ε2; un+1/2

h , φ) − (
H(un,∗

h )Un, φ
)

− 1

2
((H(un,∗

h ))2un+1/2
h , φ) + 1

2
((H(un,∗

h ))2unh, φ).

(3.28)

Here (3.25) is equivalent to (3.28) and (3.27). Therefore, the scheme (3.25) can also
avoid solving the linear systemwith double unknowns.Upon solving un+1

h from (3.28),
we can obtain Un+1 by (3.27), or (3.25b).

Remark 3.2 For the CN scheme (3.25), we can plug the expression of un+1/2
h and

Ū n+1/2 into (3.25), then the scheme is in terms of un+1
h andUn+1. In fact, we can also

take ūn+1/2 and Un+1/2 as unknowns, and then recover un+1
h and Un+1 by

un+1
h =2un+1/2

h − unn,

Un+1 =2Ū n+1/2 −Un
h .

Theorem 3.4 Given unh ∈ Vh and Un ∈ C0(�), the second order fully discrete CN-
IEQ-FEM3 scheme (3.25) admits a unique solution un+1

h ∈ Vh and Un+1 ∈ C0(�)

satisfying the energy dissipation law,

E(un+1
h ,Un+1

h ) ≤ E(un+1
h ,Un+1) = E(unh,U

n
h ) − 1

�t
‖un+1

h − unh‖2, (3.29)
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for any �t > 0.

Remark 3.3 In contrast to the limitations highlighted for the CN-IEQ-FEMs in the
context of the CH equation, it is noteworthy that the CN-IEQ-FEM schemes (3.21),
(3.23), and (3.25) demonstrate stability for the AC equation. This stability holds for
cases involving both the double well potential and the logarithmic Flory-Huggins
potential.

3.4 Second order fully discrete BDF2-IEQ-FEMs

We also present the fully discrete second-order backward differentiation formula
(BDF2) IEQ-FEMs. For these schemes, an explicit second-order approximation of
the numerical solution at tn+1 using un−1

h and unh is given by

un,∗
h = 2unh − un−1

h . (3.30)

3.4.1 Method 1 (BDF2-IEQ-FEM1)

The second order fully discrete coupled BDF2-IEQ-FEM1 scheme based on the semi-
discrete (3.3) is to find un+1

h ∈ Vh and U
n+1
h ∈ Vh such that(

3un+1
h − 4unh + un−1

h

2�t
, φ

)
= −A(ε2; un+1

h , φ) −
(
H(un,∗

h )Un+1
h , φ

)
, ∀φ ∈ Vh, (3.31a)

(
3Un+1

h − 4Un
h +Un−1

h

2�t
, ψ

)
=

(
1

2
H(un,∗

h )
3un+1

h − 4unh + un−1
h

2�t
, ψ

)
, ∀ψ ∈ Vh,

(3.31b)

The initial is given by (3.4) and

u−1
h = u0h, U−1

h = U 0
h . (3.32)

Then the following result holds.

Lemma 3.4 The second order fully discrete BDF2-IEQ-FEM scheme (3.31) admits a
unique solution un+1

h ∈ Vh and Un+1 ∈ Vh satisfying the energy dissipation law,

Ēn+1
h = Ēn

h − 1

2�t
‖3un+1

h − 4unh + un−1
h ‖2 − 1

4
A(ε2; un+1

h − un,∗
h , un+1

h − un,∗
h )

−1

2
‖Un+1

h −Un,∗
h ‖2, (3.33)

for any �t > 0, where

Ēn
h = 1

2
(E(unh,U

n
h ) + E(un,∗

h ,Un,∗
h )),

with Un,∗
h = 2Un

h −Un−1
h and un,∗

h being given in (3.30).
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3.4.2 Method 2 (BDF2-IEQ-FEM2)

The second order fully discrete BDF2-IEQ-FEM2 scheme is to find un+1
h ∈ Vh and

Un+1 ∈ C0(�) such that(
3un+1

h − 4unh + un−1
h

2�t
, φ

)
=−A(ε2; un+1

h , φ)−
(
H(un,∗

h )Un+1, φ
)

, ∀φ ∈ Vh,

(3.34a)

3Un+1 − 4Un +Un−1

2�t
=1

2
H(un,∗

h )
3un+1

h − 4unh + un−1
h

2�t
. (3.34b)

The initial solution is given by (3.6) and

u−1
h = u0h, U−1 = U 0. (3.35)

Theorem 3.5 The second order fully discrete BDF2-IEQ-FEM2 scheme (3.34) admits
a unique solution un+1

h ∈ Vh and Un+1 ∈ C0(�) satisfying the energy dissipation
law,

Ēn+1 = Ēn − 1

2�t
‖3un+1

h − 4unh + un−1
h ‖2 − 1

4
A(ε2; un+1

h − un,∗
h , un+1

h − un,∗
h )

−1

2
‖Un+1 −Un,∗‖2, (3.36)

for any �t > 0, where

Ēn = 1

2
(E(unh,U

n) + E(un,∗
h ,Un,∗)),

with Un,∗ = 2Un −Un−1 and un,∗
h being given in (3.30).

3.4.3 BDF2-IEQ-FEM3

The IEQ-FEM scheme presented below is characterized by low computational cost,
ensuring that the resulting numerical solution satisfies the energy dissipation law.
More specifically, the second order fully discrete BDF2-IEQ-FEM3 scheme is to find
un+1
h ∈ Vh and Un+1 ∈ C0(�) such that

(
3un+1

h − 4unh + un−1
h

2�t
, φ

)
=−A(ε2; un+1

h , φ)−
(
H(un,∗

h )Un+1, φ
)

, ∀φ ∈ Vh,

(3.37a)

Un
h =�Un, (3.37b)

3Un+1 − 4Un
h +Un−1

h

2�t
=1

2
H(un,∗

h )
3un+1

h − 4unh + un−1
h

2�t
. (3.37c)
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The initial solution is given by (3.6) and

u−1
h = u0h, U−1

h = U 0
h . (3.38)

By (3.37b), we have

Un+1 = 1

2
H(un,∗

h )un+1
h +

(
4Un

h −Un−1
h

3
− 1

2
H(un,∗

h )
4unh − un−1

h

3

)
. (3.39)

Plugging Un+1 in (3.39), it follows that the scheme (3.37) gives a linear system in
terms of un+1

h ,

(
3un+1

h − 4unh + un−1
h

2�t
, φ

)
= −A(ε2; un+1

h , φ) − 1

2

(
(H(un,∗

h ))2un+1
h , φ

)

− 1

3

(
H(un,∗

h )(4Un
h −Un−1

h ), φ
)

+ 1

6

(
(H(un,∗

h ))2(4unh − un−1
h ), φ

)
.

(3.40)
Here the scheme (3.37) is equivalent to the system formed by (3.40) and (3.39). In the
new system, (3.40) is an equation with respect to the solution un+1

h only, which means
the scheme (3.37) can also avoid solving the coupled system of un+1

h and Un+1.

Theorem 3.6 The second order fully discrete BDF2-IEQ-FEM3 scheme (3.37) admits
a unique solution un+1

h ∈ Vh and Un+1 ∈ C0(�) satisfying the energy dissipation
law,

Ē(un+1
h ,Un+1

h ; un+1,∗
h ,Un+1,∗

h ) ≤ Ē(un+1
h ,Un+1; un+1,∗

h ,Un+1,∗
h ) = Ē(unh,U

n; un,∗
h ,Un,∗

h )

− 1

2�t
‖3un+1

h − 4unh + un−1
h ‖2 − 1

4
A(ε2; un+1

h − un,∗
h , un+1

h − un,∗
h ) − 1

2
‖Un+1 −Un,∗

h ‖2,
(3.41)

for any �t > 0, where

Ē(vn, V n; vn,∗, V n,∗) = 1

2
(E(vn, V n) + E(vn,∗, V n,∗)),

with V n,∗ = 2V n − V n−1 for V = U ,Uh and un,∗
h being given in (3.30).
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4 Numerical examples

Upon rescaling with t ′ = εt and t ′ = ε2t for the CH equation and AC equation,
respectively, the CH problem (1.1) can be equivalently expressed as the following
rescaled CH problem [16]:

∂t u − ∇ · (M(u)∇w) = 0, (x, t) ∈ � × (0, T ],
w + ε�u − 1

ε
f (u) = 0, (x, t) ∈ � × (0, T ],

u = u0, (x, t) ∈ � × {t = 0},
(4.1)

and AC problem (1.2) is equivalent to the rescaled AC problem [13, 42]:

∂t u = �u − 1

ε2
F ′(u) in � × (0, T ],

∇u · nnn = 0 on ∂� × [0, T ],
u = u0 on � × {t = 0}.

(4.2)

In this section,we employ several numerical examples to showcase the effectiveness
of the proposed first order and second order (in Appendix) fully discrete IEQ-FEM
schemes in solving both the CH problem (1.1) or (4.1) and the AC problem (1.2) or
(4.2). For both temporal and spatial accuracy tests, we introduce a source term into
the AC equation in (4.2) as follows:

∂t u − �u + 1

ε2
F ′(u) = s(x, t), (4.3)

and into the CH equation in (1.1) as:

∂t u − ∇ · (M(u)∇w) = s(x, t). (4.4)

Additionally, unless otherwise specified, we will use the default value M(u) = 1 for
mobility and the double well potential (1.3).

4.1 The CH equation

In this section, we initially present an example to validate the temporal and spatial
convergence rates of the proposed methods for the CH (4.4). Subsequently, we com-
pare the CPU time of first-order schemes for the CH (1.1). Furthermore, we provide
more examples to evaluate the performance of proposed methods for solving the CH
equations, as illustrated in Examples 4.3- 4.4.
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4.1.1 Convergent rates

Example 4.1 [26] (Temporal and spatial accuracy test with constant mobility and
double-well potential) Consider the CH (4.4) in � = [−π, 3π ]2 with the parame-
ters ε = 1, B = 1. The exact solution u satisfies

u(x, t) = μ(x, t), (4.5)

and the corresponding right term s(x, t) in (4.4) is taken as:

s(x, t) = −μ(x, t)

4
+ ε2μ(x, t)

4
− 3μ(x, t)ν(x, t)

2
+ 3(μ(x, t))3

2
− μ(x, t)

2
, (4.6)

where

μ(x, t) = 0.1e−t/4 sin(x/2) sin(y/2),

ν(x, t) = (0.1e−t/4 cos(x/2) sin(y/2))2 + (0.1e−t/4 sin(x/2) cos(y/2))2.
(4.7)

In Fig. 1, the L2 errors and convergent rates for the CH equation are shown. From
the left figure, we find that the time accuracy is first order for the BDF1-IEQ-FEM2
scheme (2.23), and second order for the BDF2-IEQ-FEM2 scheme (2.36). For spatial
accuracy, it is second order and third order for all proposed schemes based on P1
elements and P2 elements, respectively.

Fig. 1 Example 4.1, L2 errors and convergent rates for the CH equation, Left: Time accuracy test (P2
element, T = 1, uniformmeshwith (hx , hy) = ( 4π

200 , 4π
200 )); Right: Spatial accuracy test (�t = 10−6, T =

10−3)
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4.1.2 Comparison between different schemes

Example 4.2 [26] Consider the CH (1.1) in � = [−0.5, 0.5]2 with constant mobility
M(u) = 1, the logarithmic Flory-Huggins potential

F(u) = 600(u ln u + (1 − u) ln(1 − u)) + 1800u(1 − u),

and the parameters ε = 1. The equation is subject to the following initial data

u0 =
{
0.71, |x | ≤ 0.2, |y| ≤ 0.2,

0.69, otherwise.
(4.8)

The time step is chosen as �t = 10−7, and the constant B = 100 for all the involved
IEQ-FEMs.

The snapshots depicting numerical solutions and discrete energy generated by the
three BDF1-IEQ-FEMs (2.18), (2.23), and (2.29) are illustrated in Fig. 2. It is evident
that the discrete energy decreases over time, and there are no discernible differences in
the solution skeletons. The corresponding CPU time is presented in Table 1, indicating
that the CPU time for the BDF1-IEQ-FEM2 scheme (2.23) and the BDF1-IEQ-FEM3
scheme (2.29) is significantly smaller than that of theBDF1-IEQ-FEM1scheme (2.18).
In addition, solving BDF1-IEQ-FEM1 scheme (2.18) by evaluating the inverse of the
massmatrix (2.22) ismore expensive than solving the augmented system (2.20). Based
on our observation, the focus in the subsequent tests will be primarily on Method 2
and Method 3.

Fig. 2 Example 4.2 (CH,T = 8 × 10−5), First order scheme; Left: BDF1-IEQ-FEM1 scheme (2.18),
Middle: BDF1-IEQ-FEM2 scheme (2.23), Right: BDF1-IEQ-FEM3 scheme (2.29); First row: Numerical
solution; Second row: Time evolution of the discrete energy
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Table 1 Example 4.2 (CH,T = 8 × 10−5), CPU time of the BDF1-IEQ-FEMs (11th Gen Intel(R)
Core(TM) i5-1135G7 @ 2.40GHz 2.42GHz)

Methods scheme (2.18) scheme (2.23) scheme (2.29)

CPU time (P1) 822s 195s 217s

CPU time (P2) 6815s 1078s 1209s

4.1.3 Numerical solutions for the CH equation

In the following three examples, we numerically investigate the performance of the
proposed IEQ-FEMs for solving the CH equation.

Example 4.3 [16] In this example, we consider the CH (4.1) in � = [−1, 1]2 with the
parameter ε = 0.01, �t = 10−7, and the initial condition

u0 = tanh
((

(x − 0.3)2 + y2 − 0.22
)
/ε

)
tanh

((
(x + 0.3)2 + y2 − 0.22

)
/ε

)
×

tanh
((
x2 + (y − 0.3)2 − 0.22

)
/ε

)
tanh

((
x2 + (y + 0.3)2 − 0.22

)
/ε

)
.

Test Case 1. We solve this problem by the BDF1-IEQ-FEM2 scheme (2.23) and
the BDF1-IEQ-FEM3 scheme (2.29) with mesh size h = 0.01 but different con-
stants B. The evolution of the discrete energy E(unh,�Un) for BDF1-IEQ-FEM2 and
E(unh,U

n
h ) for BDF1-IEQ-FEM3 is reported in Fig. 3, from which we observe that

solutions of the BDF1-IEQ-FEM2 satisfy the energy dissipation law only when B is
appropriately large, as explained in Remark 2.3, while solutions of BDF1-IEQ-FEM3
satisfy the energy dissipation law independent of the choice of B.
Test Case 2.We continue with this problem by testing BDF2-IEQ-FEMs with B = 1
and mesh size h = 0.01. The solutions produced by the BDF2-IEQ-FEM2 scheme
(2.36) and the BDF2-IEQ-FEM3 scheme (2.42) are shown in Fig. 4, from which we

Fig. 3 Example 4.3 (CH), Effect of constant B on the discrete energy, Left: BDF1-IEQ-FEM2 scheme
(2.23), Right: BDF1-IEQ-FEM3 scheme (2.29)
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Fig. 4 Example 4.3 (CH), numerical solutions, First and second line: BDF2-IEQ-FEM2 scheme (2.36),
Third and forth line: BDF2-IEQ-FEM3 scheme (2.42)

see that the BDF2-IEQ-FEMs produce high-quality numerical solutions for the CH
equation. The evolution of the discrete energy and total mass are shown in Fig. 5.
The results indicate that both methods preserve the total mass and satisfy the energy
dissipation law.

In the following, we further present more examples based on Method 2 with a
sufficiently large constant B to investigate the method performance.

Example 4.4 [19] Consider the 3D CH (1.1) in � = [0, 256]3 with parameter ε =
4√

8·tanh(0.9) , and initial data

u0 = 0.1rand(x, y, z),

where rand(x, y, z) generates random values between −1 and 1.
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Fig. 5 Example 4.3 (CH), Left: The discrete energy, Right: the total mass

In Fig. 6, the contour plots of solutions at six different times based on the BDF2-
IEQ-FEM2 scheme (2.36) with B = 20000, �t = 0.1 are presented. We can see that
the patterns are comparable to those in [19]. The graphs depicting the evolution of
discrete energy and mass for Example 4.4 are presented in Fig. 7. As illustrated, the
discrete energy decreases over time, and the mass is conserved.

4.2 AC equation

In this section, we will provide several examples to validate the proposed methods
for the AC (1.2) and the scaled AC (4.2), including the tests for temporal and spatial
accuracy, a comparison of the first-order schemes, and the performance of the proposed
IEQ-FEMs.

Fig. 6 Example 4.4 (CH3D), BDF2-IEQ-FEM2 scheme (2.36), numerical solutions
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Fig. 7 Example 4.4. Left: The discrete energy; Right: the total mass

4.2.1 Convergent rates

In this part, convergent rates of the proposed methods for the AC (4.3) are reported in
Example 4.5.

Example 4.5 In this example, we examine the AC (4.3) in � = [−1, 1]2 with param-
eters ε = 1. The exact solution is given by u = et cos(πx) cos(π y), and the
corresponding right term s(x, t) can be determined by substituting u into (4.3).

For the involved IEQ-FEMs, we take the constant B = 1. The time and spatial
convergent rates of the proposed methods for the AC equation are shown in Fig. 8.
From the pictures, we can see that the time accuracy is first order for the BDF1-
FEM-FEM2 scheme (3.11), and second order for both the CN-FEM-FEM2 scheme
(3.23) and the BDF2-FEM-FEM2 scheme (3.34). For spatial accuracy, the IEQ-FEMs

Fig. 8 Example 4.5, L2 errors and rates of convergence for AC equation, Left: Time accuracy test (P2
element, T = 1, uniformmeshwith (hx , hy) = ( 4π

200 , 4π
200 )); Right: Spatial accuracy test (�t = 10−6, T =

10−3)
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exhibit second order accuracy for P1 approximations and third order accuracy for P2
approximations.

Fig. 9 Contour plots of the IEQ-FEM solutions in Example 4.6 (AC), Left: BDF1-IEQ-FEM1 scheme (3.7);
Middle: BDF1-IEQ-FEM2 scheme (3.11); Right: BDF1-IEQ-FEM3 scheme (3.16)
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Fig. 10 Example 4.6 (AC, T=0.1), Time evolution of the discrete energy, Left: BDF1-IEQ-FEM1 scheme
(3.7); Middle: BDF1-IEQ-FEM2 scheme (3.11); Right: BDF1-IEQ-FEM3 scheme (3.16)

4.2.2 Comparison between different schemes

In this part, we compare the first order fully discrete BDF1-IEQ-FEMs (3.7), (3.11),
and (3.16).

Example 4.6 [6] We consider the AC (4.2) in � = [−2, 2]2 with ε = 1
16 . Define

m1 = (0, 2), m2 = (0, 0), m3 = (0,−2). Let r1 = r3 = 2 − 3ε/2, r2 = 1 and set
d j (x) = |x − m j | − r j for x ∈ � and j = 1, 2, 3. Then we take the initial condition

u0(x, y) = − tanh

(
d(x)√
2ε

)
, d(x) = max{−d1(x), d2(x),−d3(x)}. (4.9)

We present contour plots of the corresponding approximate solutions generated by
the first-order fully discrete BDF1-IEQ-FEMs (3.7), (3.11), and (3.16) with �t =
10−4, B = 1 in Fig. 9. The initially connected interface undergoes a split into two
parts, and subsequently, the two components of the interface evolve into circular
shapes. The diameters of the two particles decrease to zero until they collapse. The
corresponding pictures of discrete energy are displayed in Fig. 10. These images show
a close similarity, indicating that all three methods perform effectively.

The CPU time for these schemes is provided in Table 2. It is evident that the CPU
time for theBDF1-IEQ-FEM2 scheme (3.11) and theBDF1-IEQ-FEM3 scheme (3.16)
is shorter than that for the BDF1-IEQ-FEM1 scheme (3.7). Similarly, we also find that
solving BDF1-IEQ-FEM1 scheme (3.7) by evaluating the inverse of the mass matrix
(3.9) is more expensive than solving the augmented system (3.8). Therefore, the focus
in the subsequent tests will be primarily on Method 2 and Method 3.

Table 2 Example 4.6
(AC, T=0.1), CPU time (in
seconds) of three kinds of
methods (11th Gen Intel(R)
Core(TM) i5-1135G7 @
2.40GHz 2.42GHz)

Methods scheme (3.7) scheme (3.11) scheme (3.16)

P1 277s 179s 219s

P2 1435s 770s 828s

123



Numerical Algorithms

Fig. 11 Example 4.7 (AC), Effect of constant B on the discrete energy, Left: BDF1-IEQ-FEM2 scheme
(3.11), Middle: BDF1-IEQ-FEM3 scheme (3.16) with B = 0.1, Right: BDF1-IEQ-FEM3 scheme (3.16)
with B = 0.001

4.2.3 Numerical solving for the AC equation

Example 4.7 In this example, we consider the AC (1.2) with � = [−1, 1]2, ε = 0.02,
�t = 10−7, and the initial condition

u0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x < x0,

− 1, x > x1,

− sin

(
πx

2x1

)
, x0 ≤ x ≤ x1,

where x1 = −x0 =
√
2

20 .
Test Case 1. We solve this problem by BDF1-IEQ-FEM2 and BDF1-IEQ-FEM3
based on P1 polynomials with mesh size h = 0.1 but different constants B. The
evolution of the discrete energy E(unh,�Un) for BDF1-IEQ-FEM2 and E(unh,U

n
h )

for BDF1-IEQ-FEM3 is reported in Fig. 11, from which we can find that the solution
of BDF1-IEQ-FEM2 only satisfies the energy dissipation law when B is appropriately
large, as explained in Remark 2.3, while that of BDF1-IEQ-FEM3 satisfies the energy
dissipation law independent of the choice of the constant B.
Test Case 2.We continue solving this problem by BDF1-IEQ-FEM2 based on P1 and
P2 elements with the constant B = 0.001 but different mesh sizes h. The evolutions
of the discrete energy E(unh,�Un) are shown in Fig. 12, from which we can find that
the solution of BDF1-IEQ-FEM2 satisfies the energy dissipation law by using refined
meshes as explained in Remark 2.3.

Example 4.8 [41] In this example, we apply the BDF2-IEQ-FEM2 scheme (3.34) with
B = 1,�t = 10−4 to solve the 3DAC (4.2) in� = [−1, 1]3 with parameter ε = 0.05
and the initial solution

u0 = ε cos(1.5πx) cos(1.5π y)
(
sin(π z) + sin(2π z)

)
.

Figure 13 displays the contour plots illustrating the corresponding approximate
solutions. The observed coarsening phenomena confirm that the proposed method
works effectively for solving the 3D AC equation.
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Fig. 12 Example 4.7 (AC), effect of mesh size h on the discrete energy. First line: P1 element, Second line:
P2 element

Fig. 13 Example 4.8 (AC3D), BDF2-IEQ-FEM3 scheme (3.37), snapshots of numerical solutions
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Fig. 14 Example 4.9 (AC), CN-IEQ-FEM3 scheme (3.25), snapshots of numerical solutions

Example 4.9 In the last example, we consider the AC (1.2) in � = [−0.5, 0.5]2 with
the logarithmic Flory-Huggins potential

F(u) = 600(u ln u + (1 − u) ln(1 − u)) + 1800u(1 − u),

and the parameter ε = 1. We take the initial data as the L2 projection of the following
function The equation is subject to the following initial data

u0 =
{
0.71, |x | ≤ 0.2, |y| ≤ 0.2,

0.69, otherwise.
(4.10)

Fig. 15 Time evolution of the discrete energy. Left: Example 4.8; Right: Example 4.9
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We present contour plots of the corresponding approximate solutions generated by
the CN-IEQ-FEM3 scheme (3.25) with �t = 10−7, B = 100 in Fig. 14. It is shown
that the CN-IEQ-FEM3 scheme performs effectively.

In the end, the pictures of discrete energy for Example 4.8-Example 4.9 are shown
in Fig. 15. From the pictures, it can be observed that the discrete energy decreases
with time.

5 Conclusion

In this paper, we have proposed three types of linearly, first- and second-order, uncon-
ditionally energy-stable IEQ-FEMs for solving the CH equation and the AC equation.
In addition, the methods are mass conservative for the CH equation. These three types
of IEQ-FEMs position the intermediate function introduced by the IEQ approach in
different function spaces.Method 1 places the intermediate function solely in the finite
element space, yet it comes with high computational costs. Method 2 places the inter-
mediate function in the continuous function space, resulting in the most cost-effective
computation. Though the derived energy is unconditional energy stable, its approx-
imated energy in the finite element space is only conditionally achievable. Method
3 first computes the intermediate function in the continuous function space and then
projects it onto the finite element space. This method strikes a balance, offering a
cost-effective computation while ensuring unconditional energy decay in the finite
element space. Numerical examples have been conducted to assess the accuracy and
efficiency, as well as to verify the energy dissipation properties for both equations and
mass conservation for the CH equation.

The error analysis of the proposed methods, particularly Method 3, is highly desir-
able and deferred in future work. Also, motivated by [7], exploring the adaptive
IEQ-FEMs is intriguing, particularly in addressing the challenges posed by the small-
ness of the parameter ε in gradient flowmodels. Finally, the proposed IEQ-FEMsmay
be able to combine with much higher-order time discretization, such as the Runge-
Kutta methods, but it would be interesting to explore their numerical stability.
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