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ABSTRACT 
Background.  We sought to predict clinically meaningful 
changes in physical, sexual, and psychosocial well-being for 
women undergoing cancer-related mastectomy and breast 
reconstruction 2 years after surgery using machine learn-
ing (ML) algorithms trained on clinical and patient-reported 
outcomes data.
Patients and Methods.  We used data from women under-
going mastectomy and reconstruction at 11 study sites 
in North America to develop three distinct ML models. 
We used data of ten sites to predict clinically meaningful 
improvement or worsening by comparing pre-surgical scores 
with 2 year follow-up data measured by validated Breast-Q 
domains. We employed ten-fold cross-validation to train and 
test the algorithms, and then externally validated them using 
the 11th site’s data. We considered area-under-the-receiver-
operating-characteristics-curve (AUC) as the primary metric 
to evaluate performance.

Results.  Overall, between 1454 and 1538 patients com-
pleted 2 year follow-up with data for physical, sexual, and 
psychosocial well-being. In the hold-out validation set, our 
ML algorithms were able to predict clinically significant 
changes in physical well-being (chest and upper body) 
(worsened: AUC range 0.69–0.70; improved: AUC range 
0.81–0.82), sexual well-being (worsened: AUC range 0.76–
0.77; improved: AUC range 0.74–0.76), and psychosocial 
well-being (worsened: AUC range 0.64–0.66; improved: 
AUC range 0.66–0.66). Baseline patient-reported outcome 
(PRO) variables showed the largest influence on model 
predictions.
Conclusions.  Machine learning can predict long-term 
individual PROs of patients undergoing postmastectomy 
breast reconstruction with acceptable accuracy. This may 
better help patients and clinicians make informed decisions 
regarding expected long-term effect of treatment, facilitate 
patient-centered care, and ultimately improve postoperative 
health-related quality of life.

Keywords  Machine learning · Postmastectomy breast 
reconstruction · PRO · QOL

Postmastectomy breast reconstruction (PMBR) has 
important long-term effects on quality of life (QOL).1 With 
advances in reconstructive techniques and an increasing 
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number of women undergoing risk reducing mastectomy, 
there is a trend toward a rising demand of PMBR.2 PBMR 
is beneficial for improving body image and minimizing the 
negative impact of mastectomy on QOL.3 However, fac-
ing different breast reconstruction treatment options (e.g., 
implant-based versus autologous), many women have dif-
ficulties making high-quality decisions due to anecdotal 
methods used for patient education.4

Clinical studies have been conducted to compare differ-
ent options and evaluate the outcome of PMBR, to provide 
insights into treatment options, and to inform patients’ deci-
sion-making.5–7 For example, a previous prospective cohort 
study concluded that autologous reconstruction offers ben-
efits over implant-based reconstruction in terms of QOL.1 
However, recommendations and conclusions derived from 
group-level studies are not suitable for a specific individual’s 
situation. Tailoring individual care to match each patient’s 
expected QOL after reconstruction is necessary and warrants 
further investigation. Fortunately, the emergence of cutting-
edge computational techniques—machine learning (ML)—
accompanied by the usage of individual patient-reported 
outcome (PRO) data provides the potential to address this 
knowledge gap and to help patients and clinicians make 
informed decisions before the initiation of breast reconstruc-
tion procedures to facilitate patient-centered care.

As a branch of artificial intelligence, ML involves train-
ing algorithms to identify intricate patterns within data and 
make precise predictions.8 By learning patterns from data, 
ML has the unique capability to predict future outcomes 
at the individual level. This ability to provide personalized 
predictions and recommendations tailored to individual 
patients has the potential to greatly enhance patient care, 
leading to growing enthusiasm for the application of ML 
techniques in addressing clinical problems. Trained ML 
models using supervised learning techniques have consist-
ently demonstrated exceptional performance across a range 
of challenging prediction tasks in the medical field. These 
tasks include, but are not limited to, prediction of mortality 
in cancer patients,9 natural language processing,10 predic-
tion of financial toxicity caused by cancer treatment,11 and 
classification of benign or malignant tumor.12 The success 
of ML in these predictive tasks can be attributed to its strong 
capability to identify subtle nonlinear interactions between 
events and outcomes within multidimensional data.13 This 
ability allows ML models to uncover complex relationships 
that may not be discernible through traditional methods, 
resulting in more accurate predictions and improved deci-
sion-making across various healthcare domains.

Machine learning algorithms have previously achieved 
excellent performance in predicting breast satisfaction, 
one of the key outcomes for women undergoing PMBR, 
both at 1 and 2 year follow-up.14,15 In this comprehensive 
study, we aimed to develop and validate ML algorithms to 

accurately predict clinically meaningful, long-term changes 
in physical, sexual, and psychosocial well-being for women 
undergoing PMBR at 2 year follow-up to enhance decision-
making in this area, shifting a focus from satisfaction to the 
critical areas of health-related QOL, using the same study 
population as those prior two studies, and affording unique 
insights into the PRO on the health-related QOL prediction 
for women with breast cancer.

PATIENTS AND METHODS

Study Participants

This study cohort was a subgroup of the international 
Mastectomy Reconstruction Outcomes Consortium (MROC, 
NCT01723423) study that was conducted at 11 study sites in 
both Canada and the USA between 2012 and 2017. A total of 
3058 women undergoing PMBR were recruited as described 
in detail elsewhere.1,14

Inclusion criteria were women aged 18 years or older, 
undergoing first time bilateral or unilateral, immediate or 
delayed PMBR for risk reducing or therapeutic purposes. 
These patients could have undergone implant-based and/
or autologous reconstruction, based on the surgeon’s rec-
ommendation or their preferences. Exclusion criteria were 
patients with previous failed breast reconstruction. For the 
present analysis, patients with unreported PROs at baseline 
or 2 year follow-up were also excluded.

All included study sites received ethical approval from 
the respective institutional review board.

Study Design

Patient-reported physical, sexual, and psychosocial well-
being were evaluated before the initiation of the reconstruc-
tion procedure and at 2 year follow up by the validated and 
reliable BREAST-Q.16 Cronbach’s alpha coefficients are 
reportedly greater than 0.8 and the score of each scale ranges 
from 0 (worst well-being) to 100 (best well-being).17

Minimal clinically important difference (MCID) esti-
mates have previously been reported: MCID in physical 
well-being (chest and upper body) is a score difference of at 
least 3, and a score difference of at least 4 in both sexual and 
psychosocial well-being.18 We defined three types of out-
comes for each domain when comparing baseline PROs with 
those at 2 year follow-up: outcomes of health-related QOL 
were (1) worsened if the 2-year follow-up score was reduced 
at least by the respective MCIDs compared to baseline, (2) 
improved if the 2-year follow-up score was increased at least 
by the respective MCIDs compared with baseline, or (3) 
otherwise stable.
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To facilitate the construction of ML predictive models, 
we recoded the outcome into binary (i.e., improved versus 
not improved, worsened versus not worsened).

Algorithm Selection

We trained three ML algorithms with varying levels of 
complexity for each domain given their demonstrated prom-
ising performance in published similar medical studies con-
ducted by our team,14,15,19 and reported findings following 
relevant guidelines (TRIPOD).20

	 We briefly describe each algorithm below. A detailed 
description can be found in online supplemental docu-
ments of our previously published study.14

1.	 Logistic regression (LR) with elastic net penalty.
	 The LR with penalized magnitudes of coefficients is 

known for its easy-to-interpret prediction process, abil-
ity to avoid overfitting, and enhanced generalizability on 
new datasets.13

2.	 Extreme gradient boosting (XGBoost) tree.
	 The XGboost tree, as an ensemble-learning algorithm of 

several built models, is suitable for complex classifica-
tion tasks due to its enhanced capability in identifying 
complex relationships among predictors.21

3.	 Neural network.
	 A neural network has a unique network structure consist-

ing of connected units that is inspired by the structure of 
the human cortex. This enables identification of complex 
patterns within the dataset and capturing nonlinear rela-
tions among the input and output variables.

Data Preparation

We split the 11-site data into a development set of 10 sites 
and a validation set of 1 site. The validation site with ini-
tials of “BW” was chosen based on the number of events, as 
reported in our previous research on breast satisfaction pre-
diction.14 We included four patients, five preoperative PRO, 
and seven clinical variables as predictive factors (Table 1 in 
Supplement 1).

For data preparation, we imputed missing values using 
the K-nearest neighbors algorithm (K = 5), removed zero 
variance variables, centered and scaled all numerical vari-
ables, and dummied all categorical variables with one hot 
encoding. Variables having an absolute correlation with 
other variables over a threshold of 0.9 were removed, to 
address the multicollinearity issues.

For ML algorithm training and internal testing on the 
development set, we adopted ten-fold cross-validation with 
three repetitions and a hypergrid search to train the mod-
els and tune hyperparameters. We computed sensitivity, 

specificity, the area-under-the-receiver-operating-character-
istics-curve (AUC), precision, and recall, to assess model 
performance in each fold. We embraced the “Kappa” metric 
to evaluate final model performance in the test fold because 
of the possible class-imbalance effect. We chose the simplest 
model that was within a 3% tolerance of the empirically 
optimal model as the final model to reduce overfitting and 
improve generalizability to new datasets.22

Based on our previous research, we excluded five soci-
oeconomic and racial variables to avoid racial bias.23 We 
compared model performance among each racial group to 
evaluate the fairness of ML algorithms.24

Analysis Strategies

The predictive performance of the ML algorithms were 
measured via accuracy and AUC. Point estimates along with a 
95% confidence interval (CI) are reported. To provide insights 
into model predictions and improve transparency and interpret-
ability, we reported regularized coefficients for the LR with 
elastic net penalty, Shapley Additive explanations (SHAP) 
values for XGBoost tree,25 and local interpretable model-
agnostic explanations (LIME) for the neural network.26 For 
comparison, traditional binary logistic regression models are 
provided as well. To assess the fairness of model performance, 
we compared the predictive performance of the models across 
all racial groups in the validation set. To assess algorithm 
calibration in the validation set, we plot calibration plots with 
predicted versus observed rates of outcome.27 We conducted 
the Spiegelhalter Z test for calibration accuracy assessment,28 
with a p-value greater than 0.05 indicating the model was well 
calibrated. We calculated the scaled Brier score with a range 
between 0 (perfect predictive performance) and 1 (poor predic-
tive performance).29

Lastly, we conduct receiver operating characteristic curve 
comparisons among ML model performance in both devel-
opment and validation sets for each scale to assess their 
statistical significance. We plotted AUC of models to pre-
dict improved and worsened health-related QOL outcomes 
together to get the full picture of the performance of the 
trained ML model at each scale.

We carried out all analyses within the “R” programming 
environment with version 4.2.1. and developed ML models 
using the “caret” package.

RESULTS

Clinical and Demographic Characteristics

The analysis set comprised 1538 participants for physical 
well-being (1320 development and 218 validation), 1454 for 
sexual well-being (1247 development and 207 validation), 
and 1538 for psychosocial well-being (1319 development 
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TABLE 1   Participant baseline characteristics and health outcomes

Physical well-being (chest and upper 
body)

Sexual well-being Psychosocial well-being

Development 
set

Validation set p-Valuea Development 
set

Validation set p-Valuea Development 
set

Validation set p-Valuea

(n = 1320) (n = 218) (n =1247) (n = 207) (n =1319) (n =219)

Patient vari-
ables

BMId, mean 
(SD) (kg/m2)

26.63 (5.48) 25.72 (4.78) 0.011b 26.54 (5.43) 25.53 (4.76) 0.006b 26.61 (5.48) 25.70 (4.78) 0.011b

Preoperative 
patient-
reported 
outcome data

BREAST-Q 
physical well-
being chest 
and upper 
bodyd, mean 
(SD), 0–100

78.46 (14.55) 81.22 (14.32) 0.009b 78.62 (14.37) 81.21 (14.09) 0.015b 78.45 (14.54) 81.24 (14.29) 0.008b

BREAST-Q 
physical 
well-being 
abdomend, 
mean (SD), 
0–100

89.26 (13.79) 91.07 (11.41) 0.038b 89.35 (13.55) 91.14 (11.48) 0.046b 89.27 (13.79) 91.03 (11.39) 0.042b

Clinical vari-
ables

Reconstruction 
techniqued

  Tissue 
expander 
(TE), no. 
(%)

691 (52.3) 129 (59.2) 0.061c 654 (52.4) 124 (59.9) 0.046c 690 (52.3) 130 (59.4) 0.053c

  Superficial 
inferior 
epigastric 
artery 
(SIEA) 
flap, no. 
(%)

48 (3.6) 0 (0.00) 0.004c 42 (3.4) 0 (0.0) 0.007c 48 (3.6) 0 (0.0) 0.004c

Axillary 
interventiond

  Axillary 
lymph 
node 
dissection 
(ALND), 
no. (%)

354 (26.8) 43 (19.7) 0.027c 339 (27.2) 41 (19.8) 0.025c 352 (26.7) 43 (19.6) 0.027c

  Sentinel 
lymph 
node 
biopsy 
(SLNB), 
no. (%)

579 (43.9) 112 (51.4) 0.039c 545 (43.7) 108 (52.2) 0.023c 579 (43.9) 113 (51.6) 0.034c

Socioeconomic 
and racial 
data

Education level
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and 219 validation) to train and validate ML models as 
shown in Fig. 1. The baseline demographic and clinical 
characteristics for all three BREAST-Q scales are presented 
in Table 1 (Table 1 with details in Supplement 2). Two years 
after breast reconstruction, 563 (36.6%) patients experienced 
improved physical well-being, 592 (40.7%) improved sexual 
well-being, and 769 (50.0%) improved psychosocial well-
being, whereas 737 (47.9%), 647 (44.5%), and 453 (29.5%) 
patients experienced worsening in physical, sexual, and 
psychosocial well-being 2 years after surgery, respectively.

When comparing development and validation datasets, 
we observed significant differences in body mass index 
(BMI), baseline physical well-being, baseline physical well-
being abdomen, superficial inferior epigastric artery (SIEA) 
flap, axillary lymph node dissection (ALND), sentinel lymph 
node biopsy (SLNB), high school degree, masters/doctoral 
degree, retired working status, part-time employed work-
ing status, $25,000–49,999 household income per year, and 
greater than $100,000 household income per year (all p < 
0.05).

Table contains only significant comparison results between development and validation sets (see eTable 1 in Supplement 2 for more details). 
p-Values < 0.05 highlighted in bold.
a p-Values refer to differences in the development and validation set.
b p-Values refer to t-tests to evaluate mean differences of continuous data.
c p-Values refer to Chi-square tests for binary feature evaluation (feature true versus feature not true).
d  Variable included in the predictive models.

Table 1   (continued)

Physical well-being (chest and upper 
body)

Sexual well-being Psychosocial well-being

Development 
set

Validation set p-Valuea Development 
set

Validation set p-Valuea Development 
set

Validation set p-Valuea

(n = 1320) (n = 218) (n =1247) (n = 207) (n =1319) (n =219)

  High school 
degree, no. 
(%)

113 (8.6) 9 (4.1) 0.024c 97 (7.8) 8 (3.9) 0.043c 112 (8.5) 9 (4.1) 0.025c

  Masters/
doctoral 
degree, no. 
(%)

382 (29.0) 88 (40.4) 0.001c 368 (29.6) 86 (41.5) 0.001c 387 (29.4) 88 (40.2) 0.001c

Working status
  Retired, no. 

(%)
128 (9.8) 11 (5.1) 0.024c 108 (8.8) 9 (4.4) 0.033c 129 (9.9) 11 (5.0) 0.022c

  Part time 
employed, 
no. (%)

175 (13.4) 41 (18.9) 0.033c 164 (13.3) 40 (19.4) 0.020c 174 (13.3) 41 (18.8) 0.032c

Household 
income per 
year
  $25,000–

49,999, 
no. (%)

147 (11.6) 14 (6.5) 0.028c 133 (11.0) 12 (5.9) 0.025c 146 (11.5) 14 (6.5) 0.029c

  >$100,000, 
no. (%)

611 (48.1) 131 (61.2) 0.0004c 601 (49.9) 128 (62.7) 0.001c 617 (48.6) 132 (61.4) 0.001c

Outcome—
patient-
reported 
well-being at 
2 year follow-
up compared 
with baselined

  Stable, no. 
(%)

199 (15.1) 39 (17.9) 0.287c 175 (14.0) 40 (19.3) 0.047c 265 (20.1) 51 (23.3) 0.278c
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The correlation between 2 year psychosocial well-being 
and 2 year sexual well-being was highest (r = 0.72), fol-
lowed by PRO scores at baseline (r = 0.63). The lowest 
level of correlation was observed between baseline physical 
well-being and 2 year sexual well-being (r = 0.14) (Table 2 
in Supplement 1).

Algorithm Performance

Table 2 displays the performance of ML models with 
tuned optimal hyperparameters (Table 3 in Supplement 1) 
in both test and validation sets for each subscale. In the vali-
dation set, AUC to predict worsened physical well-being was 
0.69 (95%CI, 0.62–0.76) for the LR with elastic net penalty, 
0.69 (95%CI, 0.62–0.76) for the XGBoost tree, and 0.70 
(95%CI, 0.63–0.77) for the neural network. When predicting 
worsened sexual well-being, AUC of the three algorithms 
was 0.76 (95%CI, 0.70–0.82), 0.77 (95% CI, 0.70–0.83), 
and 0.77(95% CI, 0.70–0.83), respectively. When predicting 
worsened psychosocial well-being, AUCs were 0.66 (95% 
CI, 0.58–0.73), 0.66 (95% CI, 0.58–0.74), and 0.64 (95%CI, 
0.55–0.72), respectively.

All three models were more proficient at predict-
ing improved rather than worsened physical well-being, 
with AUCs of 0.82 (95% CI, 0.76–0.87), 0.81 (95% CI, 
0.75–0.86), and 0.81 (95%CI, 0.75–0.86), respectively. In 
predicting improved sexual well-being, the AUC was 0.76, 
(95% CI, 0.69–0.82), 0.76 (95% CI, 0.70–0.83), and 0.74 
(95% CI, 0.67–0.81), respectively. For improved psycho-
social well-being, AUCs were 0.66 (95% CI, 0.59–0.73), 
0.66 (95% CI, 0.59–0.74), and 0.66 (95% CI, 0.58–0.73).

Figure 2 indicates that performance differences among 
the algorithms were not statistically significant (p > 0.05) 
except for the models predicting improved compared with 
worsened physical well-being (p < 0.05).

An array of AUC curves of the models for each scale 
are displayed in Fig. 3. Calibration plots of all the models 
for each scale are presented in Figs. 1–3 of Supplement 3. 
Spiegelhalter’s Z test results (Table 4 Supplement 1) indi-
cate that most of the models were well calibrated except 
for neural network in predicting worsened physical well-
being (p = 0.01) and improved psychosocial well-being 
(p = 0.02), LR with elastic net penalty in predicting wors-
ened sexual well-being (p = 0.003), and XGBoost tree in 

......

Algorithm training and internal testing Algorithm external validation

Patients included in the validation set
•   n=218 for physical well-being
•   n=207 for sexual well-being
•   n=219 for psychosocial well-being

Patients included in the development set
•   n=1320 for physical well-being
•   n=1247 for sexual well-being
•   n=1319 for psychosocial well-being

Reason of patients excluded
1) missing data 2-year follow-up
•   n=1517 for physical well-being
•   n=1576 for sexual well-being
•   n=1518 for psychosocial well-being
2) missing data for baseline:
•   n=3 for physical well-being
•   n=28 for sexual well-being
•   n=2 for psychosocial well-being

Number of Patients excluded
•   n=1520 for physical well-being
•   n=1604 for sexual well-being
•   n=1520 for psychosocial well-being

Average model
performance
of all the folds

Test foldTraining folds

10-fold cross-validation

Iteration 1

Iteration 2

Iteration 10

1 complete study site (“BW”) was used as
validation set

3058
Patients were enrolled in this study

FIG. 1   Study design and flow of participants
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TABLE 2   Evaluation of algorithms trained to predict physical, sexual, psychosocial well-beings at 2 year follow-up

AUC​ Area-under-the-receiver-operating-characteristic-curve

2 Year follow-up score lower than baseline 2 Year follow-up score higher than baseline

Accuracy (95% CI) AUC (95% CI) Accuracy (95% CI) AUC (95% CI)

Physical well-being
Logistic regression with elastic net penalty

  Test set (n = 1320) 0.67(0.66–0.68) 0.71(0.70–0.72) 0.70(0.69–0.71) 0.77(0.75–0.78)
Additional validation set (n = 218) 0.63(0.56–0.69) 0.69(0.62–0.76) 0.76(0.69–0.81) 0.82(0.76–0.87)
XGBoost tree

  Test set (n = 1320) 0.66(0.64–0.67) 0.70(0.69–0.72) 0.70(0.69–0.71) 0.77(0.76–0.78)
Additional validation set (n = 218) 0.64(0.57–0.71) 0.69(0.62–0.76) 0.75(0.69–0.81) 0.81(0.75–0.86)
Neural network

  Test set (n = 1320) 0.65(0.64–0.67) 0.70(0.68–0.71) 0.69(0.69–0.71) 0.76(0.75–0.77)
Additional validation set (n = 218) 0.64 (0.58–0.71) 0.70(0.63–0.77) 0.75(0.69–0.81) 0.81(0.75–0.86)
Sexual well-being
Logistic regression with elastic net penalty

  Test set (n = 1247) 0.69(0.68–0.70) 0.75(0.74–0.77) 0.72(0.71–0.74) 0.77(0.76–0.79)
  Additional validation set (n = 207) 0.69(0.62–0.75) 0.76(0.70–0.82) 0.69(0.62–0.75) 0.76(0.69–0.82)

XGBoost tree
  Test set (n = 1247) 0.69(0.68–0.70) 0.75(0.74–0.76) 0.72(0.70–0.73) 0.76(0.74–0.77)

Additional validation set (n = 207) 0.70(0.63–0.76) 0.77(0.70–0.83) 0.69(0.62–0.75) 0.76(0.70–0.83)
Neural network

  Test set (n = 1247) 0.67(0.66–0.69) 0.75(0.73–0.76) 0.71(0.69–0.72) 0.77(0.76–0.79)
  Additional validation set (n = 207) 0.70(0.63–0.76) 0.77(0.70–0.83) 0.67(0.60–0.73) 0.74(0.67–0.81)

Psychosocial well-being
Logistic regression with elastic net penalty

  Test set (n = 1319) 0.73(0.71–0.74) 0.72(0.70–0.74) 0.69(0.68–0.70) 0.76(0.75–0.77)
Additional validation set (n = 219) 0.71(0.65–0.77) 0.66(0.58–0.73) 0.60(0.53–0.66) 0.66(0.59–0.73)
XGBoost tree

  Test set (n = 1319) 0.70(0.69–0.71) 0.68(0.66–0.70) 0.70(0.69–0.72) 0.77(0.76–0.79)
  Additional validation set (n = 219) 0.70(0.63–0.76) 0.66(0.58–0.74) 0.62(0.55–0.68) 0.66(0.59–0.74)

Neural network
  Test set (n = 1319) 0.71(0.70–0.73) 0.72(0.70–0.73) 0.70(0.69–0.71) 0.76(0.75–0.78)
  Additional validation set (n = 219) 0.71(0.64–0.77) 0.64(0.55–0.72) 0.60(0.53–0.66) 0.66(0.58–0.73)
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FIG. 2   Performance comparison between machine learning (ml) 
models to predict improved and worsened physical, sexual, psycho-
social well-beings with reconstructed breasts at 2 year follow-up. A 

ML models to predict physical well-being change. B ML models to 
predict sexual well-being change. C ML models to predict psychoso-
cial well-being change
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predicting worsened psychosocial well-being (p = 0.01) 
and improved psychosocial well-being (p = 0.0001).

Predictive Coefficients and Variable Importance

The results (Table 3) indicate that preoperative physical 
well-being (βregularized, −1.08) was most strongly negatively 
correlated with improved physical well-being at 2 year 
follow-up.

In predicting sexual well-being change at 2 year fol-
low-up, baseline sexual well-being (βregularized, − 0.78), 
tissue expander (TE) reconstruction (βregularized, − 0.51), 
and radiation after reconstruction (βregularized, − 0.44), 
were most strongly negatively correlated with improved 
changes, whereas latissimus dorsi (LD) flap reconstruction 
(βregularized, 0.48) was positively correlated.

Additionally, superficial inferior epigastric artery 
(SIEA) flap reconstruction(βregularized, − 1.04), mixed 
implants and autologous reconstruction (βregularized, −0.88), 
GAP flap (βregularized, − 0.80), other types of mastectomy 
(βregularized, − 0.65), and latissimus dorsi (LD) flap recon-
struction (βregularized, − 0.63) were most strongly negatively 
correlated with worsened psychosocial well-being at 2 
year follow-up, whereas baseline psychosocial well-being 
(βregularized, 0.77) and mixed flaps reconstruction (βregularized, 
0.74) were positively correlated with worsened outcomes. 
Similar variable importance, as well as its contribution 
to prediction, were also observed from XGBoost SHAP 
values and neural network LIME plots (Figs. 4 and 5 in 
Supplement 3), respectively.

The results of binary logistic regression identified key 
predictors and revealed their statistical significance in pre-
dicting changes in health-related QOL after surgery at 2 
year follow-up (Table 5 in Supplement 1). When compar-
ing the logistic regression with the coefficients of the ML 
models, generally the same direction and magnitude of 

associations could be observed with few exceptions. This 
gives credibility into the outcome predictions made by 
the ML model.

Racial Bias Evaluation

The performance of all ML models in predicting both 
improved and worsened physical well-being statistically 
differed between the Caucasian and Asian groups (p < 
0.05, higher scores for Asian subgroup). Neural networks 
performed statistically different between groups of Cauca-
sian versus African American (p < 0.05, higher scores for 
African American subgroup), and African American ver-
sus Asian in predicting worsened sexual well-being (p < 
0.05, higher scores for African American subgroup). All 
trained ML models showed statistically better performance 
for the African American group compared with the Cau-
casian group in both improved and worsened psychosocial 
well-being prediction (all p < 0.05) (Tables 6 and 7 in Sup-
plement 1).

DISCUSSION

In this study, we developed and validated three ML algo-
rithms to predict clinically meaningful, long-term changes 
in health-related QOL for women undergoing PMBR with 
acceptable accuracy. Our results indicate that baseline PRO 
data of physical, sexual, and psychosocial well-being had a 
much greater impact on long-term reported changes in QOL 
than clinical variables, revealing key predictors to consider 
when discussing expected QOL for patients undergoing 
cancer-related mastectomy.

We excluded study site as a variable in the machine 
learning model training for several reasons. First, neither 
the original study nor the present analysis considered the 
surgeon or study site as independent variables. Procedures 
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were performed by 57 surgeons at 11 institutions, effectively 
balancing their influence despite potential skill variations. 
Second, adding study site as a variable would create a nons-
calable algorithm that optimizes around potentially changing 
site characteristics. Therefore, excluding study site allows 
for better generalizability and scalability of the algorithm.

Compared with the sexual and psychosocial well-being 
of patients at 2 year follow-up, our findings show physi-
cal health improved in some patients but worsened in many 
more patients. This confirms previous findings that the 
physical well-being of the chest and upper body will not 
be fully restored, regardless of whether patients undergo 
implant-based or autologous reconstruction.1 The significant 
difference in performance between the prediction models 
for worsened and improved physical well-being suggests 
that the machine learning models encountered difficulties 
in accurately predicting worsened well-being. This could 
be attributed to (so far) unpredictable complications, such 
as infection, implant-related issues, or poor wound healing, 
which can arise during the postoperative period and result 
in suboptimal physical outcomes.

Previous studies using traditional statistical methods 
asserted that patients with autologous reconstruction tended 
to have a higher health-related QOL compared to those 
with implant-based reconstruction.1,30 Specifically, autolo-
gous reconstruction outperforms implants in tolerance of 
radiotherapy and improving QOL.31 Integrating radiother-
apy with breast reconstruction results in a complex impact 
across multiple dimensions of a patients’ life.31 Patients with 
nipple-sparing mastectomy have significantly higher psycho-
social and sexual well-being compared with patients with 
total mastectomy.32 However, inferences drawn from these 
group-level studies cannot infer specific treatment outcomes 
for individuals,33 as the relationships between variables of 
interest and outcomes are usually estimated after control-
ling for relevant co-variables, which does not reflect the real 
situation of each patient. Machine learning may overcome 
this limitation and help tailoring outcome predictions to the 
individual patient.13

Our results also indicate that patients with higher base-
line physical, sexual, and psychosocial well-being were more 
likely to have worsened PROs in these three domains after 
breast reconstruction. Whether implant-based or autologous 
procedures were associated with improved or worsened QOL 
depended on the specific type of reconstruction, which was 
also seen in the binary logistic regression: taking direct-to-
implant (DTI) reconstruction as a reference, TE reconstruc-
tion was associated with worsened sexual well-being and 
deep inferior epigastric perforator (DIEP) flap reconstruction 
was associated with a decreased risk of worsened physi-
cal well-being (chest and upper body). These individual-
level outcomes predicted by ML models aim to better guide 
and optimize patient decision-making process to achieve 

expected postoperative outcomes when determining prefer-
ences for the exact reconstruction procedure. Nevertheless, 
a comparison of the performance of traditional statistical 
models with ML algorithms in this field appears highly war-
ranted to help more clearly distinguish and highlight advan-
tages of these developed intelligent decision-making tools.

Our team has previously published the development and 
validation of accurate ML algorithms to predict clinically 
meaningful changes in breast satisfaction with reconstructed 
breasts at 2 year follow-up in this cohort.14 AUC of the 
same three ML models to predict changes in satisfaction 
with reconstructed breasts study (improved: AUC range 
0.86–0.87; decreased: AUC range 0.84–0.85) was higher 
compared with the performance in predicting changes in 
physical, sexual, and psychosocial well-being in the pre-
sent analysis. Insights into predictors also underscored the 
importance of baseline PRO variables over clinical vari-
ables, similar to what we observed in the present analysis. 
Moreover, age was associated with worsened breast sat-
isfaction (decreased: βregularized, 0.01) and physical well-
being (improved: βregularized, − 0.03) but improved sexual 
well-being (improved: βregularized, 0.15) and psychosocial 
well-being (improved: βregularized, 0.06). This observation 
is underpinned by previous studies concluding that not all 
women necessarily experience worsening sexual function 
with higher age34 and that some older women have higher 
levels of sexual satisfaction,35 where psychosocial factors 
appear to play a crucial role.36

This study comes with several limitations. First, gen-
eral guidelines for multivariate models recommend hav-
ing at least 100 events for validation.37 However, none of 
the 11 study sites in this study met this requirement for all 
three scales simultaneously. Future, prospective validation 
with larger sample sizes seems warranted. Second, due to 
small samples or no samples in some racial groups (e.g., 
Hispanics), the ML performance assessment in these racial 
groups was not feasible. Some ML algorithms performed 
statistically significantly better in certain racial groups. 
We acknowledge that achieving equal performance across 
races becomes more challenging when sample sizes are lim-
ited, which aligns with findings of previous studies in this 
regard.14 Future studies may validate our findings and miti-
gate potential racial bias in a more diverse setting, not just 
academic institutions included here only. Third, although 
we achieved similar completion rates to similar PRO stud-
ies in literature,1 one cannot ignore that around half of the 
initially enrolled patients were lost to follow-up after 2 
years. The results (Table 1 in Supplement 4) indicate that 
participants who were lost to follow-up were more likely to 
be younger, single, have a higher BMI, undergo TE recon-
struction technique, and less likely to be married or have 
undergone DIEP reconstruction techniques. Future studies 
may consider using advanced PRO assessment approaches 



7057Enhanced Surgical Decision‑Making Tools …                 

such as computer adaptive testing to reduce patients’ assess-
ment burden and improve their engagement.38,39 Fourth, this 
study may establish a benchmark for interested researchers 
studying ML models on classification tasks for breast cancer 
patients. However, before implementing these algorithms in 
clinical practice to predict individual outcomes, necessary 
steps such as prospective clinical trials are needed to confirm 
their validity and reliability in real clinical settings.33 Fifth, 
the ML approach used in this study required dichotomiza-
tion of outcomes. We chose this approach due to the recent 
upcoming concept of “clinically-important differences” in 
PROM research.40,41 However, some clinicians and patients 
might be more concerned about the degree or magnitude of 
change in their well-being due to the reconstruction proce-
dure. This issue might be addressed in future research via 
modeling techniques that allow for continuous outcomes 
(e.g., linear modeling). Sixth, clinical implementation of 
digital health tools has proved to be a challenging task with 
many barriers including, for example, lack of transdiscipli-
nary knowledge.42 Future research seems warranted to inves-
tigate the development and clinical feasibility of a digital 
tool that assists patients and clinicians in clinical decision-
making process.

CONCLUSIONS

In this study, we developed and validated ML algorithms 
to predict clinically meaningful, long-term changes in physi-
cal, sexual, and psychosocial well-being for women under-
going cancer-related mastectomy and breast reconstruction 
at 2 year follow-up with acceptable accuracy. These algo-
rithms may function as a data-driven decision-making tool 
to assist in making informed treatment decisions for women 
undergoing breast reconstruction, and further facilitate 
patient-centered care by tailoring individualized treatment 
in clinical practice.
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