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Abstract
For a class of fourth order gradient flow problems, integra-

tion of the scalar auxiliary variable (SAV) time discretiza-

tion with the penalty-free discontinuous Galerkin (DG)

spatial discretization leads to SAV-DG schemes. These

schemes are linear and shown unconditionally energy sta-

ble. However, the reduced linear systems are rather expen-

sive to solve due to the dense coefficient matrices. In this

paper, we provide a procedure to pre-evaluate the aux-

iliary variable in the piecewise polynomial space. As a

result the computational complexity of O
(
 2

)
reduces to

O( ) when exploiting the conjugate gradient (CG) solver.

This hybrid SAV-DG method is more efficient and able to

deliver satisfactory results of high accuracy. This was also

compared with solving the full augmented system of the

SAV-DG schemes.
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1186 LIU AND YIN

1 INTRODUCTION

This paper is concerned with efficient numerical approximations to a class of fourth order gradient

flows [4]:

ut = −
(
Δ + a

2

)2

u − Φ′(u), x ∈ Ω ⊂ R
𝑑

, t > 0, (1.1)

which governs the evolution of a scalar time-dependent unknown u = u(x, t) in a convex bounded

domain Ω ⊂ R
𝑑

, Φ is a nonlinear function and a serves as a physical parameter. The model

Equation (1.1) describes important physical processes in nature. Typical application examples include

the Swift-Hohenberg (SH) equation [23] and the extended Fisher–Kolmogorov equation [3, 16].

It is known that under appropriate boundary conditions, Equation (1.1) features a decaying free

energy

𝑑

dt
(u) = −

∫Ω
|ut|2dx ≤ 0, (1.2)

where

(u) =
∫Ω

1

2
(u)2 + Φ(u)dx,  = −

(
Δ + a

2

)
. (1.3)

This energy dissipation law as a fundamental property of (1.1) is always desirable for numerical

approximations, and often crucial to eliminate numerical results that are not physical.

For the spatial discretization, we follow the penalty free discontinuous Galerkin (DG) method

introduced in [10]. The key idea is to introduce q = u so that the resulting semi-discrete DG scheme

becomes

(uht, 𝜙) = −A (qh, 𝜙) −
(
Φ′ (uh) , 𝜙

)
, (1.4a)

(qh, 𝜓) = A (uh, 𝜓) , (1.4b)

for all 𝜙, 𝜓 in the same DG space as for uh, qh. Here A (qh, ⋅) is the DG discretization of (q, ⋅). This

spatial DG discretization avoids the use of penalty parameters (called penalty-free DG method) in

the numerical flux on interior cell interfaces. It also inherits most of the advantages of the usual DG

methods (see e.g., [8, 17, 18]), such as high order accuracy, flexibility in hp-adaptation, capacity to

handle domains with complex geometry.

In order to formulate an energy dissipative scheme with the time discretization, the linear terms in

(1.4) can be treated implicitly, but nonlinear terms have to be handled with care. The IEQ-DG method

introduced in [13] is to integrate the DG method with the method of invariant energy quadratization

(IEQ) [22, 25]. It boils down to solving an augmented system involving the dynamics of the auxiliary

variable U =
√
Φ (uh) + B. We remark that the IEQ approach is remarkable as it allows one to construct

linear, unconditionally energy stable schemes for a large class of gradient flows (see, e.g., [11, 12,

22-25]). We refer the readers to [11] for more references to earlier results on both the DG approximation

and the time discretization.

As pointed out in [11], one could also integrate the same DG method with the so-called SAV

approach [19] by introducing an auxiliary variable r =
√
∫Ω Φ(u(x, t))dx + B. This transforms (1.4)

into another augmented system. As for the IEQ-DG method, here one can also obtain a closed linear

system for
(
un+1

h , qn+1

h
)

only. Unfortunately, such systems involve dense coefficient matrices and rather

expensive to solve.

There are two ways to get around this obstacle: (i) find a path to lower the computational complexity

of solving the reduced linear system; or (ii) return to the full augmented system with
(
un+1

h , qn+1

h , rn+1
)

as unknowns. For (i) we introduce a special procedure to pre-compute rn+1 = r
(
tn+1

)
in the piecewise

polynomial space based on a linear DG solver; with such obtained rn+1
, we solve the SAV-DG schemes
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LIU AND YIN 1187

with reduced computational cost. This treatment is interesting in its own sake. We name it the hybrid

SAV-DG method. For (ii), the full augmented system indeed involves only sparse coefficient matrices.

Here the full system contains one more equation since r does not depend on x. In contrast, the full

system with
(
un+1

h , qn+1

h ,Un+1
)

as unknowns for the IEQ-DG method contains N(k+1)more equations.

Here N is the total number of the 1-D meshes, and k the degree of DG polynomials. The advantage of

the IEQ-DG method lies in the simplicity of its reduced system.

Comparing the linear systems of the above three SAV-DG type-schemes, we see that the coefficient

matrices are all symmetric, but it is time-dependent and dense for the reduced system, time-dependent

and sparse for the full augmented system, and time-independent and sparse for the hybrid SAV-DG.

Indeed, our numerical tests confirm that the hybrid SAV-DG algorithm performs the best. The SAV

approach may also be integrated with other DG methods in such hybrid manner.

Due to recent works (see, e.g., [1, 5-7]) both IEQ and SAV approaches could also be made arbitrar-

ily high order in time. Though here we only discuss first and second order time discretization with the

SAV approach, an extension to SAV-DG schemes of arbitrary high order (in time) is possible. For ODE

solvers on such extension we refer to [13], where arbitrarily high order IEQ-based RKDG schemes are

constructed to solve equations of form (1.1).

As for the spatial discretization of (1.1), one may also adopt other methods such as the

pseudo-spectral method [9, 26] to capture spatial patterns with high-resolution on structured meshes,

while extra issues are involved when dealing with complex domains or non-periodic boundary condi-

tions. The main purpose of this work is to show how to integrate the SAV approach with the DG spatial

discretization, in contrast to collocation methods studied in [1, 5-7, 19] for either SAV or IEQ schemes.

1.1 Organization

This paper is organized as follows: In Section 2, we formulate a unified semi-discrete DG method for

the fourth order Equation (1.1) subject to two different boundary conditions. In Section 3, we present

SAV-DG schemes, show the energy dissipation law, and discuss several ways to efficiently implement

the schemes. In Section 4, we provide a procedure to pre-evaluate the auxiliary variable and then

present the according algorithms. In Section 5, we verify the good performance of the hybrid SAV-DG

using several numerical examples. Finally, some concluding remarks are given in Section 6.

Notation Throughout this paper, we use the notation Π to indicate the usual piecewise

L2
projection in the sense of inner product with ∀𝜙 ∈ Vh,

(Πw, 𝜙) = (w, 𝜙), ∀𝜙 ∈ Vh,

where Vh is the discontinuous Galerkin finite element space.

2 SPATIAL DG DISCRETIZATION

To introduce the hybrid SAV-DG algorithm, we need to first recall some conventions about the

semi-discrete DG discretization introduced in [12]. To be specific, we only consider homogeneous

boundary conditions of form

(i) u is periodic; or (ii) 𝜕nu = 𝜕nΔu = 0, x ∈ 𝜕Ω, (2.1)

where n stands for the unit outward normal to the boundary 𝜕Ω.
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1188 LIU AND YIN

For the fourth order PDE (1.1), we set q = u so that the model admits the following mixed form

{
ut = −q − Φ′(u),
q = u.

(2.2)

Let the domain Ω be a union of shape regular meshes h = {K}, with the mesh size hK = diam {K}
and h = maxK hK . We denote the set of the interior interfaces by Γ0

, the set of all boundary faces by

Γ𝜕 , and the discontinuous Galerkin finite element space by

Vh =
{

v ∈ L2(Ω) ∶ v|K ∈ Pk(K), ∀K ∈ h
}
,

where Pk(K) denotes the set of polynomials of degree no more than k on element K. If the normal

vector on the element interface e ∈ 𝜕K1 ∩ 𝜕K2 is oriented from K1 to K2, then the average {⋅} and the

jump [⋅] operator are defined by

{v} = 1

2

(
v ||𝜕K

1
+ v||𝜕K

2

)
, [v] = v ||𝜕K

2
− v||𝜕K

1

,

for any function v ∈ Vh, where v|
𝜕Ki (i = 1, 2) is the trace of v on e evaluated from element Ki. Then

the DG method for (2.2) is to find (uh(⋅t), qh(⋅t)) ∈ Vh × Vh such that

(uht, 𝜙) = −A (qh, 𝜙) −
(
Φ′ (uh) , 𝜙

)
, (2.3a)

(qh, 𝜓) = A (uh, 𝜓) , (2.3b)

for all 𝜙, 𝜓 ∈ Vh. The initial data for uh is taken as the piecewise L2
projection, denoted by uh(x, 0) =

Πu0(x). In the above scheme formulation A (qh, 𝜙) is the DG discretization of (q, 𝜙) and A (uh, 𝜓) is

the DG discretization of (u, 𝜓).
The precise form of A(⋅, ⋅) depending on the types of boundary conditions is given as follows:

A(w, v) = A0(w, v) + Ab(w, v)

with

A0(w, v) =
∑

K∈h
∫K

(
∇w ⋅ ∇v − a

2
wv

)
dx +

∑

e∈Γ0
∫e
({𝜕

𝜈
w} [v] + [w] {𝜕

𝜈
v}) ds. (2.4)

Here Ab(⋅, ⋅) are given below for each respective type of boundary conditions:

for (i) of (2.1) Ab(w, v) = 1

2 ∫Γ𝜕
({𝜕

𝜈
w} [v] + [w] {𝜕

𝜈
v}) ds, (2.5a)

for (ii) of (2.1) Ab(w, v) = 0. (2.5b)

Note that for periodic case in (2.5a) the left boundary and the right boundary are considered as same,

for which we use the factor 1∕2 to avoid recounting.

One can verify that the semi-discrete scheme (2.3) satisfies a discrete energy dissipation law (see

[11])

𝑑

dt
 (uh, qh) = −

∫Ω
|uht|2dx ≤ 0,

where

 (uh, qh) =
∫Ω

1

2
|qh|2 + Φ (uh) dx. (2.6)

For non-homogeneous boundary conditions, it only requires a modification by adding some source

terms in the DG formulation. Of course, the energy dissipation also needs to be refined to account for

the boundary effects.
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LIU AND YIN 1189

3 TIME DISCRETIZATION

With time discretization using the SAV approach (cf. [19]), we introduce

r = r(t) ≔

√

∫Ω
Φ (uh(x, t)) dx + B

where B is so chosen that this quantity is well-defined, and consider the following enlarged system:

find (uh(⋅, t), qh(⋅, t)) ∈ Vh × Vh and r = r(t) such that

(uht, 𝜙) = −A (qh, 𝜙) − r (b (uh) , 𝜙) , (3.1a)

(qh, 𝜓) = A (uh, 𝜓) , (3.1b)

rt =
1

2 ∫Ω
b (uh) uhtdx, (3.1c)

for all 𝜙, 𝜓 ∈ Vh. Here we use the notation

b(w(⋅)) = Φ′(w(⋅))√
∫Ω Φ(w(x))dx + B

. (3.2)

The initial data for the above scheme is chosen as

uh(x, 0) = Πu0(x), r(0) =

√

∫Ω
Φ (u0(x)) dx + B,

where Π denotes the piecewise L2
projection into Vh.

One can verify that a modified energy of form

E (uh, qh, r) =
1

2 ∫Ω
q2

hdx + r2 =  (uh, qh) + B (3.3)

satisfies the following dissipation inequality

𝑑

dt
E (uh, qh, r) = −

∫Ω
|uht|2dx ≤ 0.

Using the Euler-forward time discretization, we obtain the first order SAV-DG scheme: find
(
un

h, qn
h
)
∈

Vh × Vh and rn = r (tn) such that for any for 𝜙, 𝜓 ∈ Vh,

(
Dtun

h, 𝜙
)
= −A

(
qn+1

h , 𝜙

)
− rn+1

(
b
(
un

h
)
, 𝜙

)
, (3.4a)

(
qn

h, 𝜓
)
= A

(
un

h, 𝜓
)
, (3.4b)

Dtrn = 1

2 ∫Ω
b
(
un

h
)

Dtun
hdx, (3.4c)

The initial data u0

h = uh(x, 0), r0 = r(0). Here we used Dtvn = vn+1−vn

Δt
.

Reformulation (3.1) also allows for even higher order in time discretization. To illustrate this we

only consider a second order SAV-DG scheme: find
(
un

h, qn
h
)
∈ Vh × Vh such that for all 𝜙, 𝜓 ∈ Vh,

(
Dtun

h, 𝜙
)
= −A

(
qn+1∕2

h , 𝜙

)
− rn+1∕2

(
b
(
un,∗

h
)
, 𝜙

)
, (3.5a)

(
qn

h, 𝜓
)
= A

(
un

h, 𝜓
)
, (3.5b)

Dtrn = 1

2 ∫Ω
b
(
un,∗

h
)

Dtun
hdx, (3.5c)
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1190 LIU AND YIN

where vn+1∕2 =
(
vn + vn+1

)
∕2 for v = uh, qh, r, and un,∗

h is defined by

un,∗
h = 3

2
un

h −
1

2
un−1

h . (3.6)

Here instead of un+1∕2

h we use un,∗
h to avoid the use of iteration steps in updating the numerical solution,

while still maintaining second order accuracy in time. When n = 0 in (3.6), we simply take u−1

h = u0

h.

Both scheme (3.4) and (3.5) are unconditionally energy stable.

Theorem 3.1 (i) Scheme (3.4) admits a unique solution
(
un

h, qn
h
)
, and for En ≔

E
(
un

h, qn
h, rn), we have

En+1 = En −
||un+1

h − un
h||

2

Δt
− 1

2
||qn+1

h − qn
h||

2 − |||r
n+1 − rn|||

2

. (3.7)

for any Δt > 0.

(ii) Scheme (3.5) admits a unique solution, and

En+1 = En −
||un+1

h − un
h||

2

Δt
(3.8)

for any Δt > 0.

The proof of this result is deferred to Appendix A.

Though, SAV-DG schemes are linear and unconditionally energy stable, their numerical imple-

mentations cannot be handled as for the IEQ-DG schemes in [11]. To see this, we follow [11] to rewrite

(3.4) into a closed linear system for
(
un+1

h , qn+1

h
)

as

(
un+1

h , 𝜙

)
+ Δt

2

(
b
(
un

h
)
, 𝜙

) (
b
(
un

h
)
, un+1

h
)
+ ΔtA

(
qn+1

h , 𝜙

)

=
(
un

h, 𝜙
)
+ Δt

2

(
b
(
un

h
)
, 𝜙

) (
b
(
un

h
)
, un

h
)
− rn (b

(
un

h
)
, 𝜙

)
,

A
(
un+1

h , 𝜓

)
−
(
qn+1

h , 𝜓

)
= 0. (3.9)

This linear system with a nonlocal term
(
b
(
un

h
)
, un+1

h
)

has a symmetric yet dense and unstructured

coefficient matrix, and is rather expensive to solve.

To get around this obstacle, we either return to the augmented system with
(
un+1

h , qn+1

h , rn+1
)

as

unknowns, or attempt to find a way to reduce the computational complexity of solving the reduced

linear system (3.9). For the former, the linear system for the first order scheme is

(Δt)−1
(
un+1

h , 𝜙

)
+ A

(
qn+1

h , 𝜙

)
+ rn+1

(
b
(
un

h
)
, 𝜙

)
= (Δt)−1

(
un

h, 𝜙
)
, (3.10a)

A
(
un+1

h , 𝜓

)
−
(
qn+1

h , 𝜓

)
= 0, (3.10b)

(
un+1

h , b
(
un

h
))
− 2rn+1 =

(
un

h, b
(
un

h
))
− 2rn

. (3.10c)

Though the coefficient matrix of this linear system is also time-dependent, it is sparse and symmetric,

hence still suitable for efficient computing. In fact, we use the conjugate gradient (CG) solver to solve

this system with the computational complexity of order O( ); while it is of order O
(
 2

)
when

solving the reduced system (3.9); see, for example, [20].

As for the latter, we introduce a special procedure to pre-compute rn+1
in order to substantially

reduce the total computational complexity. This treatment is interesting in particular within the DG

framework. The details will be presented in the next section. For a class of Cahn-Hillard type gradient

flows, the authors of [19] suggested a procedure for the SAV approach at the semi-discrete level, which
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LIU AND YIN 1191

involves in solving two fourth-order elliptic equations sequentially. However, solving fourth-order

equations within the DG framework can be a challenging task. Our pre-evaluation to be detailed in

Section 4 provides novel techniques for actually implementing a fully discrete SAV-DG method.

4 PRE-EVALUATION OF THE AUXILIARY VARIABLE AND
ALGORITHMS

4.1 Pre-evaluation of the auxiliary variable rn+1

We introduce an auxiliary linear system: find (vh,wh) ∈ Vh × Vh such that for ∀𝜙, 𝜓 ∈ Vh,

𝜏A (wh, 𝜙) + (vh, 𝜙) = (fh, 𝜙) ,
(wh, 𝜓) = A (vh, 𝜓) , (4.1)

and define operator (hv, 𝜓) = A(v, 𝜓) for any 𝜓 ∈ Vh. We have the following.

Lemma 4.1 For any 𝜏 > 0 and fh given, system (4.1) admits a unique solution (vh,wh),
given by

vh = h(𝜏)fh, wh = hvh = hh(𝜏)fh. (4.2)

Moreover, the operator h(𝜏) can be expressed as
(
I + 𝜏2

h
)−1

, with the following bounds:

(fh,h(𝜏)fh) = ||h(𝜏)fh||2 + 𝜏||hh(𝜏)fh|| ≥ 0. (4.3)

||h(𝜏)fh|| ≤ ||fh||.

Proof . Set 𝜙 = vh and 𝜓 = wh in (4.1) so that

||vh||2 + 𝜏||wh||2 = (fh, vh) ≤
1

2

(
||fh||2 + ||vh||2

)
.

Hence

||vh||2 + 2𝜏||wh||2 ≤ ||fh||2. (4.4)

This a priori estimate ensures both existence and uniqueness of the linear system (4.1). Combining

two equations in (4.1) we obtain (
𝜏2

h + I
)

vh = fh.

This implies that

h(𝜏) =
(
I + 𝜏2

h
)−1

,

and (4.3) follows from (4.4), completing the proof.

Equipped with the above result, we can compute rn+1
in advance for the SAV-DG scheme (3.4).

Theorem 4.1 Given
(
un

h, qn
h
)
, scheme (3.4) can be realized in two steps:

(i) Determine rn+1
by

rn+1 = rn − 1

2

(
Πb

(
un

h
)
, un

h
)
+ 1

2
Rn
, (4.5)

where

Rn =
(
b
(
un

h
)
,h(Δt)𝜉n)

1 + Δt
2

(
Πb

(
un

h
)
,h(Δt)Πb

(
un

h
)) , (4.6)

𝜉

n = un
h − ΔtΠb

(
un

h
)

rn + Δt
2
Πb

(
un

h
) (

b
(
un

h
)
, un

h
)
; (4.7)

 10982426, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.22929, W
iley O

nline L
ibrary on [07/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1192 LIU AND YIN

(ii) with such obtained rn+1
we solve the following linear system:

(
Dtun

h, 𝜙
)
= −A

(
qn+1

h , 𝜙

)
−
(
b
(
un

h
)
, 𝜙

)
rn+1

,

(
qn+1

h , 𝜓

)
= A

(
un+1

h , 𝜓

)
.

Proof . Denote h = h(Δt). From (3.4a) we have

un+1

h = un
h − Δt2

hun+1

h − ΔtΠb
(
un

h
)

rn+1 ∈ Vh, (4.8)

which further gives

un+1

h = hun
h − Δtrn+1hΠb

(
un

h
)
.

Using (3.4c), that is,

rn+1 = rn + 1

2

(
b
(
un

h
)
, un+1

h − un
h
)
, (4.9)

we see that

un+1

h = h𝜉
n − Δt

2
hΠb

(
un

h
) (

b
(
un

h
)
, un+1

h
)
,

where 𝜉
n

is given in (4.7). Applying inner product against b
(
un

h
)

gives

(
1 + Δt

2

(
b
(
un

h
)
,hΠb

(
un

h
))) (

b
(
un

h
)
, un+1

h
)
=
(
b
(
un

h
)
,h𝜉

n)
.

Since
(
hΠb

(
un

h
)
, b

(
un

h
))
=
(
hΠb

(
un

h
)
,Πb

(
un

h
))
≥ 0, hence,

(
b
(
un

h
)
, un+1

h
)
=

(
b
(
un

h
)
,h𝜉

n)

1 + Δt
2

(
Πb

(
un

h
)
,hΠb

(
un

h
)) .

This when inserted into (4.9) completes the proof.

We can also compute rn+1
in advance for the second order SAV-DG scheme (3.5).

Theorem 4.2 Given
(
un

h, qn
h
)
, scheme (3.5) can be realized in two steps:

(i) Determine rn+1∕2 by

rn+1∕2 = rn − 1

2

(
Πb

(
un,∗

h
)
, un

h
)
+ 1

2
Rn,∗

, (4.10)

where

Rn,∗ =
(
b
(
un,∗

h
)
,h(Δt∕2)𝜉n,∗)

1 + Δt
4

(
Πb

(
un,∗

h
)
,h(Δt∕2)Πb

(
un,∗

h
)) , (4.11)

𝜉

n,∗ = un
h −

1

2
ΔtrnΠb

(
un,∗

h
)
+ Δt

4
Πb

(
un,∗

h
) (

b
(
un,∗

h
)
, un

h
)
; (4.12)

(ii) with such obtained rn+1∕2 we solve the following linear system:

(
Dtun

h, 𝜙
)
= −A

(
qn+1∕2

h , 𝜙

)
−
(
b
(
un,∗

h
)
, 𝜙

)
rn+1∕2

,

(
qn

h, 𝜓
)
= A

(
un

h, 𝜓
)
. (4.13)

Proof . Scheme (3.5) may be rewritten as

(
̃Dtun+1∕2

h , 𝜙

)
= −A

(
qn+1∕2

h , 𝜙

)
− rn+1∕2

(
b
(
un,∗

h
)
, 𝜙

)
,

(
qn

h, 𝜓
)
= A

(
un

h, 𝜓
)
,

̃Dtrn+1∕2 = 1

2 ∫Ω
b
(
un,∗

h
)
̃Dtun+1∕2

h dx,
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LIU AND YIN 1193

Here ̃Dt denotes a forward difference with time step Δt∕2 so that

̃Dtrn+1∕2 = Dtrn
.

This is the same form as the first order SAV-DG method with b
(
un

h
)

replaced by b
(
un,∗

h
)

and time step

Δt replaced by Δt∕2. Hence, the claimed results follow directly from those in Theorem 4.1.

4.2 Algorithms. The details related to the scheme implementation are summarized in the
following algorithms

Algorithm 4.1 Hybrid algorithm for the first order SAV-DG scheme (3.4)

• Step 1 (Initialization) From the given initial data u0(x).

(1) generate u0

h = Πu0(x) ∈ Vh;

(2) generate r0 =
√
∫Ω Φ (u0(x)) dx + B, where B is a priori chosen constant so that

infv
(
∫Ω Φ(v(x))dx + B

)
> 0.

• Step 2 (Evolution).

(1) solve for Πb
(
un

h
)

from b
(
un

h
)
;

(2) obtain h(Δt)Πb
(
un

h
)
= vh by solving the linear system (4.1) with fh = Πb

(
un

h
)
;

(3) obtain h(Δt)𝜉n = vh by solving the linear system (4.1) with fh = 𝜉n in (4.7);

(4) calculate Rn
in (4.6);

(5) calculate rn+1
through (4.5);

(6) solve the following linear system for un+1

h , qn+1

h ,

(
un+1

h , 𝜙

)
+ ΔtA

(
qn+1

h , 𝜙

)
=
(
un

h, 𝜙
)
− Δt

(
b
(
un

h
)
, 𝜙

)
rn+1

,

A
(
un+1

h , 𝜓

)
−
(
qn+1

h , 𝜓

)
= 0.

Algorithm 4.2 Hybrid algorithm for the second order SAV-DG scheme (3.5)

• Step 1 (Initialization) From the given initial data u0(x).

(1) generate u0

h = Πu0(x) ∈ Vh;

(2) solve for q0

h from (3.5b) based on u0

h;

(3) generate r0 =
√
∫Ω Φ (u0(x)) dx + B, where B is a priori chosen constant so that

infv
(
∫Ω Φ(v(x))dx + B

)
> 0.

• Step 2 (Evolution).

(1) solve for Πb
(
un,∗

h
)

based on b
(
un,∗

h
)
, where un,∗

h is defined in (3.6);

(2) obtain h(Δt∕2)Πb
(
un,∗

h
)
= vh by solving the linear system (4.1) with fh = Πb

(
un,∗

h
)
;

(3) obtain h(Δt∕2)𝜉n,∗ = vh by solving the linear system (4.1) with fh = 𝜉n,∗
in (4.12);

(4) calculate Rn,∗
in (4.11);

(5) calculate rn+1∕2
through (4.10);

(6) solve the following linear system for un+1∕2

h , qn+1∕2

h ,

(
un+1∕2

h , 𝜙

)
+ (Δt∕2)A

(
qn+1∕2

h , 𝜙

)
=
(
un

h, 𝜙
)
− (Δt∕2)

(
b
(
un,∗

h
)
, 𝜙

)
rn+1∕2

,

A
(

un+1∕2

h , 𝜓

)
−
(

qn+1∕2

h , 𝜓

)
= 0;

(7) calculate un+1

h = 2un+1∕2

h − un
h.
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1194 LIU AND YIN

Note that each coefficient matrix of the linear system involved in Algorithms 4.1 and 4.2 is sym-

metric, sparse, and time-independent. The use of the CG solver for solving these linear systems induces

the computational complexity of only order O( ).

5 NUMERICAL EXAMPLES

In this section we numerically test both the spatial and temporal orders of convergence, and apply the

second order fully discrete SAV-DG scheme (3.5) to recover roll patterns and hexagonal patterns gov-

erned by the two dimensional Swift-Hohenberg equation and further verify the unconditional energy

stability of the numerical solutions.

In our numerical tests, we take rectangular meshes. The L∞ and L2
errors between the numer-

ical solution un
h(x, y) and the exact solution u (tn

, x, y) evaluated to obtain experimental orders of

convergence (EOC) are defined respectively by

en
h = max

i
max

0≤l≤k+1

max
0≤s≤k+1

|un
h
(
x̂i

l, ŷi
s
)
− u

(
tn
, x̂i

l, ŷi
s
)
|

and

en
h =

(
∑

i

hi
xhi

y

4

k+1∑

l=1

k+1∑

s=1

𝜔l,s
|||u

n
h
(
x̂i

lŷi
s
)
− u(tn

, x̂i
l, ŷi

s)
|||
2

)1∕2

,

where 𝜔l,s > 0 are the weights, and
(
x̂i

l, ŷi
s
)

are the corresponding quadrature points. The EOC at T =
nΔt = 2n(Δt∕2) in terms of mesh size h = maxi

{
hi

x, hi
y
}

and time step Δt are calculated respectively

by

EOC = log
2

(
en

h
en

h∕2

)

, EOC = log
2

(
en

h
e2n

h

)
.

The relative errors in L∞ and L2
norm are defined respectively by

||un
h(x, y) − u (tn

, x, y) ||L∞(Ω)
||u (tn

, x, y) ||L∞(Ω)
and

||un
h(x, y) − u (tn

, x, y) ||
||u (tn

, x, y) ||
.

The Swift-Hohenberg equation is a special case of model Equation (1.1) with a = 2 and

Ψ(u) = 1 − 𝜀
2

u2 − g
3

u3 + u4

4
,

that is,

ut = −Δ2u − 2Δu + (𝜀 − 1)u + gu2 − u3
. (5.1)

Here physical parameters are g ≥ 0 and 𝜀, which together with the size of the domain play an important

role in pattern selection; see, for example, [2, 14, 15]. Our numerical tests center on this equation for

which

Φ(u) = −𝜀
2

u2 − g
3

u3 + u4

4

g ≥ 0 and 𝜀 > 0. This function has double wells with two local minimal values at u± = g±
√

g2+4𝜀

2
such

that Φ′ (u±) = 0, and

Φ(u) ≥ min {Φ (u±)} = min
v=u±

(
− 1

12

(
gv

(
g2 + 4𝜀

)
+ 𝜀

(
g2 + 3𝜀

)))
= −a,

so it suffices to choose the method parameter B = a|Ω|. In all numerical examples a < 1, so we simply

take B = |Ω| for all cases.
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LIU AND YIN 1195

Example 5.1 (Spatial Accuracy Test) Consider the Swift-Hohenberg Equation (5.1)

with an added source of form

f (x, y, t) = −𝜀v − gv2 + v3
, v ≔ e−t∕4

sin(x∕2) sin(y∕2),

on Ω, subject to initial data

u0(x, y) = sin(x∕2) sin(y∕2), (x, y) ∈ Ω. (5.2)

This problem has an explicit solution

u(x, y, t) = e−t∕4
sin(x∕2) sin(y∕2), (x, y) ∈ Ω. (5.3)

This example is used to test the spatial accuracy, using polynomials of degree k with

k = 1, 2, 3 on 2D rectangular meshes. In the second-order SAV-DG scheme (3.5), we

need to add
1

2

(
f
(
⋅, tn+1

, 𝜙

)
+ f (⋅, tn

, 𝜙)
)
,

to the right hand side of (3.5a).

Test case 1. We take 𝜀 = 0.025, g = 0, and domain Ω = [−2𝜋, 2𝜋]2 with periodic boundary

conditions. Both errors and orders of convergence at T = 0.01 are reported in Table 1. These results

confirm the (k + 1) th orders of accuracy in L2
,L∞ norms.

Test case 2. We take 𝜀 = 0.025, g = 0.05, domain Ω = [−𝜋, 3𝜋]2 with boundary condition

𝜕
𝜈
u = 𝜕

𝜈
Δu = 0, (x, y) ∈ 𝜕Ω. Both errors and orders of convergence at T = 0.01 are reported in

Table 2. These results also show that (k+1) th orders of accuracy in both L2
and L∞ norms are obtained.

Example 5.2 (Temporal Accuracy Test) Consider the Swift-Hohenberg equation with

source term given as in Example 5.1. We take 𝜀 = 0.025 and g = 0, and domain Ω =
[−4𝜋, 4𝜋]2 with periodic boundary conditions, subject to initial data

u0(x, y) = sin(x∕4) sin(y∕4). (5.4)

Its exact solution is given by

u(x, y, t) = e−49t∕64
sin(x∕4) sin(y∕4), (x, y) ∈ Ω.

Test case 1. We compute the numerical solutions using the SAV-DG schemes (3.4) and (3.5) based on

P2
polynomials with time steps Δt = 2

−m
for 2 ≤ m ≤ 5 and mesh size 64× 64. The L2

,L∞ errors and

orders of convergence at T = 2 are shown in Table 3, and these results confirm that DG schemes (3.4)

and (3.5) are first order and second order in time, respectively.

TABLE 1 L2
,L∞ errors and EOC at T = 0.01 with mesh N × N

N = 8 N = 16 N = 32 N = 64

k 𝚫t Error Error Order Error Order Error Order

1 1e-3 ||u − uh||L2 3.18621e-01 8.28732e-02 1.94 2.02935e-02 2.03 5.04416e-03 2.01

||u − uh||L∞ 1.38452e-01 3.83881e-02 1.85 9.61389e-03 2.00 2.40363e-03 2.00

2 1e-4 ||u − uh||L2 6.96867e-02 1.49828e-02 2.22 2.01641e-03 2.89 2.56761e-04 2.97

||u − uh||L∞ 2.41046e-02 2.94730e-03 3.03 4.02470e-04 2.87 5.14111e-05 2.97

3 1e-5 ||u − uh||L2 1.19940e-02 1.13110e-03 3.41 7.72013e-05 3.87 5.01113e-06 3.95

||u − uh||L∞ 3.85634e-03 3.68735e-04 3.39 2.43503e-05 3.92 1.53912e-06 3.98
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1196 LIU AND YIN

TABLE 2 L2
,L∞ errors and EOC at T = 0.01 with mesh N × N

N = 8 N = 16 N = 32 N = 64

k 𝚫t Error Error Order Error Order Error Order

1 1e-3 ||u − uh||L2 3.18621e-01 8.28732e-02 1.94 2.02935e-02 2.03 5.04416e-03 2.01

||u − uh||L∞ 1.38452e-01 3.83886e-02 1.85 9.61391e-03 2.00 2.40363e-03 2.00

2 1e-4 ||u − uh||L2 6.96867e-02 1.49828e-02 2.22 2.01641e-03 2.89 2.56762e-04 2.97

||u − uh||L∞ 2.41054e-02 2.94731e-03 3.03 4.02470e-04 2.87 5.14110e-05 2.97

3 1e-5 ||u − uh||L2 1.19940e-02 1.13110e-03 3.41 7.72042e-05 3.87 5.05657e-06 3.93

||u − uh||L∞ 3.85659e-03 3.68738e-04 3.39 2.43504e-05 3.92 1.53917e-06 3.98

TABLE 3 L2
,L∞ errors and EOC at T = 2 with time step Δt

𝚫t = 2−2 𝚫t = 2−3 𝚫t = 2−4 𝚫t = 2−5

Scheme Mesh Error Error Order Error Order Error Order

(3.4) 64 × 64 ||u − uh||L2 3.05892e-01 1.58442e-01 0.95 8.07023e-02 0.97 4.07442e-02 0.99

||u − uh||L∞ 1.75153e-02 9.09087e-03 0.95 4.64080e-03 0.97 2.34881e-03 0.98

(3.5) 64 × 64 ||u − uh||L2 4.17744e-02 8.14437e-03 2.36 1.74312e-03 2.22 3.98404e-04 2.13

||u − uh||L∞ 4.01428e-03 7.92985e-04 2.34 1.46602e-04 2.44 3.60847e-05 2.02

Test case 2. Again, we compute the numerical solutions using the SAV-DG scheme (3.5) based on

P2
polynomials with time stepsΔt = 2

−m
for 2 ≤ m ≤ 5 and mesh size N×N with N = 32 and N = 64.

The evolution of the relative L2
and L∞ errors of the numerical solution with different time steps is

shown in Figure 1. We also show the evolution of the difference un
h(x, y) − u (tn

, x, y) with mesh size

64 × 64 and different time steps. For Δt = 2
−2

and Δt = 2
−5

, the evolution is shown in Figures 2 and

3, respectively. All these results indicate that the SAV-DG method is able to keep the desired accuracy

of the numerical solution over long time simulation.

Example 5.3 We consider the Swift-Hehenberg equation with the parameters in

Example 5.2. Here we compare the computational complexity of (3.9), (3.10), and

Algorithm 4.1 in implementing the first order SAV-DG scheme (3.4). We use P1
polyno-

mials with time step Δt = 10
−2

and meshes N ×N. The total CPU time and the orders of

the CPU time relative to the number of unknowns are presented in Table 4.

Let  = 6N2 + 1 be the total number of unknowns. The results tell us that the computational

complexity of (3.9) is O
(
 2

)
, but only O( ) for (3.10) and Algorithm 4.1. The key for the O( )

complexity lies in the sparsity of the coefficient matrix, however, (3.10) solves a larger system, and

Algorithm 4.1 involves a pre-evaluation procedure. Still Algorithm 4.1 appears best among all three

methods.

6 CONCLUDING REMARKS

For a class of fourth order gradient flows, integration of the spatial discretization based on the

penalty-free DG method introduced in [12] with the temporal discretization based on the SAV approach

introduced in [21] to handle nonlinear terms led us to SAV-DG schemes. Such schemes inherit the
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FIGURE 1 Evolution of relative errors with different time step.

FIGURE 2 Evolution of the difference un
h(x, y) − u (tn

, x, y) with Δt = 2
−2

and N = 64.
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1198 LIU AND YIN

FIGURE 3 Evolution of the difference un
h(x, y) − u (tn

, x, y) with Δt = 2
−5

and N = 64.

TABLE 4 The CPU time in seconds with respect to meshes N × N at T = 0.1

N = 8 N = 16 N = 32 N = 64

Method CPU time CPU time Order CPU time Order CPU time Order

(3.9) 3.46 16.58 1.13 157.58 1.63 2687.80 2.05

(3.10) 2.70 9.79 0.93 38.10 0.98 155.07 1.01

Algorithm 4.1 2.10 7.39 0.91 28.49 0.97 116.00 1.01

energy dissipation property of the continuous equation irrespectively of the mesh and time step sizes.

However, the resulting linear system involving unknowns (u, q) only, where q is an approximation of

 = −
(
Δ + a

2

)
u, is rather expensive to solve due to the dense coefficient matrix. In this paper, we

have developed hybrid SAV-DG algorithms in two steps: we (i) provide a procedure to pre-evaluate

the auxiliary variable rn+1
in the piecewise polynomial space, and (ii) solve the resulting linear sys-

tem with the obtained rn+1
. This procedure reduced the computational complexity of the CG solver to

O( ) from O
(
 2

)
; here is the total number of unknowns. We also presented several numerical

examples to assess the performance of the hybrid SAV-DG algorithms in terms of accuracy and energy

stability. Also the cost of the hybrid SAV-DG is comparable to that for solving the augmented system

involving (u, q, r), with the hybrid SAV-DG performing better as evidenced by our numerical results.
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APPENDIX A: PROOFS OF ENERGY DISSIPATION LAWS

Proof . (i) We first prove (3.7). From (3.4b), it follows

(
Dtqn

h, 𝜓
)
= A

(
Dtun

h, 𝜓
)
. (A.1)

Taking 𝜓 = qn+1

h and 𝜙 = Dtun
h in (3.4a), when combined with (3.4c) we have

−||Dtun
h||

2 =
(
Dtqn

h, qn+1

h
)
+
(
b
(
un

h
)
,Dtun

h
)

rn+1

= 1

2
Dt||qn

h||
2 + Δt

2
||Dtqn

h||
2 + 2rn+1Dtrn

= 1

2
Dt||qn

h||
2 + Δt

2
||Dtqn

h||
2 + Dt|rn|2 + Δt|Dtrn|2, (A.2)

which leads to the desired equality (3.7).

Next, we show the uniqueness of the SAV-DG scheme (3.4). Let (ũ, q̃, r̃) be the difference of two

possible solutions at t = tn+1, then (A.2) is equivalent to

1

Δt
||ũ||2 + ||q̃||2 + 2|̃r|2 = 0,

hence, we must have (ũ, q̃, r̃) = (0,0,0), leading to the uniqueness of the linear system (3.4), hence its

existence since for a linear system in finite dimensional space, existence is equivalent to its uniqueness.

(ii) We first prove (3.8). From (3.5b), it follows

(
Dtqn

h, 𝜓
)
= A

(
Dtun

h, 𝜓
)
. (A.3)

Taking 𝜓 = qn+1∕2

h and 𝜙 = Dtun
h in (3.5a), when combined with (3.5c) we have

−||Dtun
h||

2 =
(

Dtqn
h, q

n+1∕2

h

)
+
(
b
(
un,∗

h
)

rn+1∕2
,Dtun

h
)
= 1

2
Dt||qn

h||
2 + Dt|rn|2.

Multiplying by Δt on both sides of this equality leads to (3.8).

Similar to (i), the existence of the SAV-DG scheme (3.5) is equivalent to its uniqueness, we let

(ũ, q̃, r̃) be the difference of two possible solutions at t = tn+1 again, then a similar analysis yields

1

Δt
||ũ||2 + 1

2
||q̃||2 + |̃r|2 = 0,

hence, we must also have (ũ, q̃, r̃) = (0,0,0), leading to the uniqueness of the scheme (3.5).
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