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a b s t r a c t

We propose unconditionally energy stable Runge–Kutta (RK) discontinuous Galerkin
(DG) schemes for solving a class of fourth order gradient flows including the Swift–
Hohenberg equation. Our algorithm is geared toward arbitrarily high order approxima-
tions in both space and time, while energy dissipation remains preserved for arbitrary
time steps and spatial meshes. The method integrates a penalty free DG method for
spatial discretization with a multi-stage algebraically stable RK method for temporal
discretization by the energy quadratiztion (EQ) strategy. The resulting fully discrete DG
method is proven to be unconditionally energy stable. By numerical tests on several
benchmark problems we demonstrate the high order accuracy, energy stability, and
simplicity of the proposed algorithm.
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1. Introduction

In this paper, we are concerned with arbitrarily high order numerical approximations to a class of fourth order gradient
ollows,

ut = −L2u −Φ ′(u), x ∈ Ω, t > 0, (1.1)

here L = − (∆+ a) is a second-order operator with a physical parameter a and Φ is a nonlinear function bounded
rom below. The model equation (1.1) governs the evolution of a scalar time-dependent unknown u = u(x, t) in a
onvex domain Ω ⊂ Rd and it describes important physical processes in nature. Typical examples of (1.1) include the
wift–Hohenberg equation [1] and the extended Fisher–Kolmogorov equation [2,3].
We consider boundary conditions of form

(i) u is periodic; or (ii) ∂nu = ∂n∆u = 0, x ∈ ∂Ω, (1.2)
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where n stands for the unit outward normal to the boundary ∂Ω . With such boundary conditions, Eq. (1.1) indeed features
the energy dissipation property:

d
dt

E(u) = −

∫
Ω

|ut |
2dx ≤ 0, (1.3)

here the free energy

E(u) =

∫
Ω

1
2
(Lu)2 +Φ(u)dx. (1.4)

he model equation is nonlinear, its analytical solution is intractable. Hence designing accurate, efficient, and energy
table algorithms to solve it becomes essential. This energy dissipation law as a fundamental property of (1.1) has been
xplored in high order numerical approximations [4–6]. It was shown to be crucial to eliminate numerical results that are
ot physical. In this paper, we construct, analyze, and numerically validate unconditionally energy stable and arbitrarily
igh order schemes to solve the above model problem, for which we use discontinuous Galerkin (DG) methods for spatial
iscretization, and high order Runge–Kutta (RK) methods for time discretization.
In the literature, there has been rapid development of different methods for simulating gradient flow models including

1.1), see e.g., [7–18]. They vary either in the spatial discretization or the time discretization, while the latter typically
mphasizes preserving the energy dissipation property with no or mild time step restrictions. Let us briefly discuss the
xisting works closely related to what we do here.
DG spatial discretization. It is known that for equations containing higher order spatial derivatives, DG discretization

ntails subtle difficulties in defining numerical fluxes. Several approaches have been developed to deal with the difficulties,
ncluding the local DG (LDG) methods [19–21], the mixed symmetric interior penalty (SIPG) methods [22–24], the direct
G methods (DDG) [25–27], and the ultra-weak DG [28]. To avoid certain drawbacks of these methods, a penalty free DG
ethod was introduced in [29], where the symmetric structure of the model (1.1) is essentially used. This method still

nherits the advantages of the usual DG methods, [30–33], its distinct feature lies in numerical fluxes without using any
nterior penalty. This is the spatial discretization we shall follow in this work.

EQ reformulation and time discretization. To keep the energy stability for gradient flow models, several time
iscretization techniques are available in the literature, including the convex splitting [12,13], and the stabilization
pproach [14,15]. The former leads to nonlinear schemes, and the later often imposes restrictions on nonlinear terms
n the model. The energy quadratization (EQ) approach introduced in [16,17] turned to be more general in the sense that
t could be applied to a class of gradient flow models. Based on the idea of EQ, the scalar auxiliary variable (SAV) approach
as introduced later in [18], where linear systems only with constant coefficients need to be solved. Several extensions of
Q and SAV have been further explored in [34–37]. Earlier EQ based schemes are mostly up to 2nd order accurate in time,
ntil recent works [38,39], where the EQ formulation is combined with the Runge–Kutta methods to achieve high order in
ime schemes. Note that their schemes are fully nonlinear so that the solution existence and uniqueness are not guaranteed
or large time steps. This issue is further addressed in [40] in which the obtained schemes are unconditionally energy stable
nd linear. However, existing EQ based schemes such as [16,17,38–40] use mainly finite-difference or spectral methods
or spatial discretization. New difficulties arise when coupling EQ with the DG discretization, which is the main focus of
his work.

Integration of DG with EQ. Integration of EQ formulation with DG for solving (1.1) began with [5], where up to 2nd
rder (in time) IEQ-DG schemes were introduced. These schemes are shown to be unconditionally energy stable. A key
oint for the success in the scheme formulation is that the auxiliary energy variable is updated in pointwise manner, and
hen projected back into the DG space. This strategy of constructing the IEQ-DG schemes was further extended to solve
he Cahn–Hilliard equation [41], where the spatial discretization is based on the DDG method [25,26]. However, all these
Q based DG schemes are no more than second order in time.

.1. Present investigation

We begin with a semi-discrete DG scheme of from (2.4), which is an ODE system coupled with an algebraic relation,
nd the energy dissipation law is well preserved at this semi-discrete level. The results in [5] show that 2nd order (in
ime) DG schemes can be made unconditionally energy stable. One interesting question about this semi-DG formulation
emains unanswered by previous studies: can we identify even higher order time discretization that is still unconditionally
nergy stable?
In order to answer this question, we augment the DG formulation to a ‘linearized’ ODE system by introducing an

uxiliary function, which is not necessarily in the DG space. We further apply a multi-stage RK method for temporal
iscretization. Through a careful analysis we are able to establish that the resulting fully discrete RKDG method is
nconditionally energy stable if we adopt an algebraically stable RK time discretization. Such algebraically stable RK class
as been previously explored for energy stable time-discretization of some gradient flow models, see, e.g., [38–40,42].
We would like to point out that the special form of the underlying semi-discrete DG formulation requires new

echniques in both the scheme construction and the proof of the energy stability. For instance, in order to ensure the
xplicit update of the EQ auxiliary variable, a spatial projection is essentially used in each stage to project it back
2
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into the DG space. This helps to reduce the computational cost while fulfilling the explicit update of the auxiliary
variable in DG space. In addition, the semi-discrete DG scheme in the mixed formulation involves an intermediate
function q = − (∆+ a) u, which plays an essential role for avoiding the use of any penalty parameter on interior cell
boundaries [29]. In the proof of the energy dissipation property, several novel techniques are designed to handle the
underlying DG formulation, for which u and q are independently approximated in DG space. To the best of our knowledge,
the RKDG method presented here provides the first unconditionally energy stable schemes of arbitrarily high order for
(1.1) within the DG framework.

1.2. Our contribution

In this paper, we propose new Runge–Kutta DG schemes to solve (1.1), which at their core integrate a penalty free DG
discretization with an algebraically stable RK time discretization. The following consists of our main contributions.

• We prove that the RKDG method features a discrete energy dissipation law for any time steps, hence called
unconditionally energy stable.

• We conduct experiments on benchmark examples to assess the performance of the proposed method. First, we
present numerical results to show the high order of spatial and temporal accuracy of the RKDG method, and the
energy dissipating property of numerical solutions. Second, we conduct experiments on some two-dimensional
pattern formation problems, all of which demonstrate the good performance of the RKDG algorithm.

The common feature of gradient flow models is that the dynamics is driven by minimizing a free energy. There are other
gradient flows such as the classical Allen–Cahn equation [43] and Cahn–Hilliard equation [44]. Our method can be readily
adapted to the Allen–Cahn equation. For the Cahn–Hilliard equation, instead of (2.4), the semi-discrete DG formulation
introduced in [41] may be used as a basis for developing a similar high order RKDG method.

1.3. Organization

In Section 2, we formulate a unified semi-discrete DG method for the gradient flow (1.1) subject to two different
boundary conditions. In Section 3, we present RKDG schemes, and establish the energy dissipation law at the discrete
level. We also present an RKDG algorithm following a prediction–correction procedure. In Section 4, we verify the good
performance of the RKDG algorithm using several benchmark numerical examples. Finally some concluding remarks are
given in Section 5.

2. Spatial DG discretization

We derive mathematical formulation for our method. We begin with rewriting (1.1) as a mixed form{
ut = −Lq −Φ ′(u),
q = Lu. (2.1)

uch reformulation is not unique, the symmetric feature of (2.1) is essential for our DG method without the use of any
nterior penalty [29]. Let us recall some conventions of the DG discretization introduced in [29]. Let the domain Ω be a
nion of shape regular meshes Th = {K }, with the mesh size hK = diam{K } and h = maxK hK . We denote the set of the

interior interfaces by Γ 0, the set of all boundary faces by Γ ∂ , and the discontinuous Galerkin finite element space by

Vh = {v ∈ L2(Ω) : v|K ∈ Pk(K ), ∀K ∈ Th},

where Pk(K ) denotes the set of polynomials of degree no more than k on element K . If the normal vector on the element
interface e ∈ ∂K1 ∩ ∂K2 is oriented from K1 to K2, then the average {·} and the jump [·] operator are defined by

{v} =
1
2
(v|∂K1 + v|∂K2 ), [v] = v|∂K2 − v|∂K1 ,

for any function v ∈ Vh, where v|∂Ki (i = 1, 2) is the trace of v on e evaluated from element Ki.
The penalty free DG discretization of (2.1) on each element, following [29], is of the form∫

K
uhtφdx = −

∫
K

∇qh · ∇φdx +

∫
∂K
∂̂νqhφ + (qh − q̂h)∂νφds +

∫
K

(
aqh −Φ ′(uh)

)
φdx, (2.2a)∫

K
qhψdx =

∫
K

∇uh · ∇ψdx −

∫
∂K
∂̂νuhψ + (uh − ûh)∂νψds −

∫
K
auhψdx, (2.2b)

or uh, qh ∈ Vh with test functions φ, ψ ∈ Vh. Here, ν is the outward normal direction to ∂K for each K . On cell interfaces
∈ ∂K

⋂
Γ 0, central numerical fluxes

∂̂νqh = {∂νqh}, q̂h = {qh}, ∂̂νuh = {∂νuh}, ûh = {uh} (2.3)

re adopted.
3
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Summation of (2.2) over all elements K ∈ Th leads to a unified DG formulation, which is to find (uh(·, t), qh(·, t)) ∈

h × Vh such that

(uht , φ) = −G(qh, φ) − (Φ ′(uh), φ), (2.4a)

(qh, ψ) = G(uh, ψ), (2.4b)

or all φ, ψ ∈ Vh. The precise form of G(·, ·) depending on the types of boundary conditions is given as follows:

G(w, v) =

∑
K∈Th

∫
K
(∇w · ∇v − awv) dx +

∑
e∈Γ 0

∫
e
({∂νw}[v] + [w]{∂νv}) ds

+
θ

2

∫
Γ ∂
({∂νw}[v] + [w]{∂νv}) ds,

(2.5)

here θ = 1 for (i) of (1.2) and θ = 0 for (ii) of (1.2). Note that for periodic case (i) the left boundary and the right
oundary are considered as same, for which we use the factor 1/2 to avoid recounting. The initial data for uh is taken as
he piecewise L2 projection, denoted by uh(x, 0) = Πu0(x).

The remarkable property of the above DG scheme is that the discrete energy of form

E(uh, qh) :=
1
2
∥qh∥2

+

∫
Ω

Φ(uh)dx (2.6)

admits a discrete dissipation law [29]:
d
dt

E(uh, qh) = −

∫
Ω

|uht |
2dx ≤ 0. (2.7)

. Time discretization

This section is devoted to arbitrarily higher order time discretization of the DG formulation (2.4). First, we choose C0
o that Φ(w) + C0 > 0, ∀w ∈ R, and introduce

H(w) =
Φ ′(w)

√
Φ(w) + C0

. (3.1)

he IEQ reformulation of (2.4) requires to find (uh(·, t), qh(·, t)) ∈ Vh × Vh and U such that

(uht , φ) = − G(φ, qh) − (H(uh)U, φ) , (3.2a)

(qh, ψ) =G(uh, ψ), (3.2b)

Ut =
1
2
H(uh)uht , (3.2c)

for all φ,ψ ∈ Vh. The initial data for the above scheme is chosen as

uh(x, 0) = Πu0(x), U(x, 0) =

√
Φ(u0(x)) + C0,

here Π denotes the piecewise L2 projection into Vh. Note that U ̸∈ Vh.
There are two steps involved in the time discretization of (3.2). First, we utilize the numerical solutions of uh for t ≤ tn

o obtain a high order approximation u∗

h , and replace the semi-discrete DG scheme (3.2) by

(uht , φ) = − G(φ, qh) −
(
H(u∗

h)U, φ
)
, (3.3a)

(qh, ψ) =G(uh, ψ), (3.3b)

Ut =
1
2
H(u∗

h)uht . (3.3c)

This linear scheme can be further solved in t ∈ (tn, tn+1] by a high order ODE solver. We should point out that the above
treatment does not destroy the energy dissipation property. Since for the modified energy functional

E(qh,U) =
1
2
∥qh∥2

+ ∥U∥
2

= E(uh, qh) + C0|Ω| (3.4)

till satisfies
d
dt

E(qh,U) = −

∫
Ω

|uht |
2dx ≤ 0.

ecall that for ODE of from yt = f (t, y), the general s-stage Runge–Kutta (RK) method has the form

yn+1
= yn + τ

s∑
biki,
i=1

4
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where

ki = f (tn + ciτ , yn + τ

s∑
j=1

aijkj), i = 1, . . . , s.

Here for consistency the RK coefficients satisfy ci =
∑s

j=1 aij and
∑s

i=1 bi = 1. For the convenience in applying the RK
method to the semi-discrete DG schemes, we introduce the operator Lh by

(Lhv, φ) = G(v, φ) ∀φ ∈ Vh. (3.5)

3.1. RKDG method

Applying an s-stage RK time discretization to semi-discrete scheme (3.3), we obtain the following RKDG method. For
given un

h,U
n and un,∗

ih = u∗

h(x, tn + ciτ ), we find

(un+1
h , qn+1

h ,Un+1
h ) ∈ Vh × Vh × Vh

by

un+1
h =un

h + τ

s∑
i=1

biξih, (3.6a)

qn+1
h =Lhun+1

h , (3.6b)

Un+1
=Un

h + τ

s∑
i=1

bili, (3.6c)

Un+1
h =ΠUn+1, (3.6d)

where ξih ∈ Vh and li are determined by

(ξih, φ) = − G(q̃ih, φ) −

(
H(un,∗

ih )Ũi, φ

)
, i = 1, 2, . . . , s (3.7a)

(q̃ih, ψ) =G(ũih, ψ), ∀φ,ψ ∈ Vh, (3.7b)

li =
1
2
H(un,∗

ih )ξih, (3.7c)

nd

ũih =un
h + τ

s∑
j=1

aijξjh, (3.8a)

Ũi =Un
h + τ

s∑
j=1

aijlj. (3.8b)

efinition 3.1 (Algebraically Stable RK Method [45]). A RK method is algebraically stable if the RK coefficients satisfy
tability conditions

bi ≥ 0, i = 1, 2, . . . , s, and M is positive semi-definite, (3.9)

here M is a symmetric matrix with elements

Mij = biaij + bjaji − bibj. (3.10)

Next, we show that the above RKDG scheme is unconditionally energy stable.

heorem 3.1. The RKDG method with its RK coefficients satisfying the stability condition (3.9) is uniquely solvable for any
> 0 and unconditionally energy stable in the sense that

En+1
h ≤ En

h − τ

s∑
i=1

bi∥ξih∥2, (3.11)

here the energy

En
:= E(qn,Un) =

1
∥qn∥2

+ ∥Un
∥
2.
h h h 2 h h

5
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Proof. In order to prove (3.11), we use ∥Uh∥ ≤ ∥U∥ to obtain

En+1
h − En

h ≤
1
2
(∥qn+1

h ∥
2
− ∥qnh∥

2) + (∥Un+1
∥
2
− ∥Un

h∥
2)

and estimate two terms on the right, respectively. First we have

1
2

(
∥qn+1

h ∥
2
− ∥qnh∥

2)
=(qn+1

h − qnh, q
n+1
h ) −

1
2
∥qn+1

h − qnh∥
2

=G(un+1
h − un

h, q
n+1
h ) −

1
2
∥qn+1

h − qnh∥
2

=τ

s∑
i=1

biG(qn+1
h , ξih) −

1
2
∥qn+1

h − qnh∥
2.

ote that from ((3.6)ab), ((3.7)b) and ((3.8)a), we have

qn+1
h =Lhun+1

h = Lhun
h + τ

s∑
j=1

bjLhξjh,

q̃ih =Lhũih = Lhun
h + τ

s∑
j=1

aijLhξjh.

This gives

qn+1
h = q̃ih + τ

⎛⎝ s∑
j=1

bjLhξjh −

s∑
j=1

aijLhξjh

⎞⎠ ,
which implies

G(qn+1
h , ξih) = G(q̃ih, ξih) + τ

⎛⎝ s∑
j=1

bjG(Lhξjh, ξih) −

s∑
j=1

aijG(Lhξjh, ξih)

⎞⎠ . (3.12)

etting φ = −ξih in ((3.7)a), we have

−∥ξih∥
2

=G(q̃ih, ξih) +

(
H(un,∗

ih )Ũi, ξih

)
=G(q̃ih, ξih) + 2(Ũi, li),

(3.13)

where we have used ((3.7)c) in the last step. Combining (3.13) with (3.12) gives

G(qn+1
h , ξih) = −∥ξih∥

2
− 2(Ũi, li) + τ

⎛⎝ s∑
j=1

bjG(Lhξjh, ξih) −

s∑
j=1

aijG(Lhξjh, ξih)

⎞⎠ .
urther, using ((3.6)ab), we obtain

1
2
∥qn+1

h − qnh∥
2

=
1
2

(
Lhun+1

h − Lhun
h, Lhu

n+1
h − Lhun

h

)
=

1
2
τ 2

s∑
i,j=1

bibj
(
Lhξih, Lhξjh

)
=

1
2
τ 2

s∑
i,j=1

bibjG(ξih, Lhξjh).

For the second term we use ((3.6)c) to obtain

∥Un+1
∥
2
− ∥Un

h∥
2

=2(Un+1,Un+1
− Un

h ) − ∥Un+1
− Un

h∥
2

=2(Un+1, τ

s∑
i=1

bili) − (Un+1
− Un

h ,U
n+1

− Un
h )

=2τ
s∑

bi(Un+1, li) − τ 2
s∑

bibj(li, lj).

i=1 i,j=1

6
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Putting together all these estimates,

En+1
h − En

h ≤ −
1
2
τ 2

s∑
i,j=1

bibjG(ξih, Lhξjh) − τ 2
s∑

i,j=1

bibj(li, lj)

+ τ

s∑
i=1

biG(qn+1
h , ξih) + 2τ

s∑
i=1

bi(Un+1, li)

≤ − τ 2
s∑

i,j=1

bibj(li, lj) − τ

s∑
i=1

bi∥ξih∥2
+ 2τ

s∑
i=1

bi(Un+1
− Ũi, li)

+ τ 2

⎛⎝1
2

s∑
i,j=1

bibjG(Lhξjh, ξih) −

s∑
i,j=1

biaijG(Lhξjh, ξih)

⎞⎠ .
ubtracting ((3.8)b) from ((3.6)c) gives

Un+1
− Ũi = τ

s∑
j=1

bjlj − τ

s∑
j=1

aijlj.

ence

2τ
s∑

i=1

bi(Un+1
− Ũi, li) = 2τ 2

⎛⎝ s∑
i,j=1

bibj(li, lj) −

s∑
i,j=1

biaij(li, lj)

⎞⎠ .
ombining the results above, we have

En+1
h − En

h ≤ −τ

s∑
i=1

bi∥ξih∥2
−
τ 2

2

s∑
i,j=1

Mij(Lhξih, Lhξjh) − τ 2
s∑

i,j=1

Mij(li, lj)

≤ −τ

s∑
i=1

bi∥ξih∥2,

where we have used (3.9).
It is left to prove the unique solvability of the fully discrete scheme, for which it suffices to prove the linear scheme

admits only a zero solution if un
h = 0 and Un

= 0. In fact from En
h = 0, the energy dissipation inequality above tells that

1
2
∥qn+1

h ∥
2
+ ∥Un+1

∥
2
+ τ

s∑
i=1

bi∥ξih∥2
+
τ 2

2

s∑
i,j=1

Mij(Lhξih, Lhξjh) + τ 2
s∑

i,j=1

Mij(li, lj) ≤ 0.

his therefore ensures that

qn+1
h = 0,Un+1

= 0, i = 1, . . . , s,

nd biξih = 0 for i = 1 · · · s, so un+1
h = τ

∑s
i=1 biξih = 0. □

emark 3.1. System (3.7) may be put as a closed linear system as

(ξih, φ)+
τ

2

s∑
j=1

aij
(
H(un,∗

ih )2ξjh, φ
)
+ G(q̃ih, φ) = −

(
H(un,∗

ih )Un
h , φ

)
,

τ

s∑
j=1

aijG(ξjh, ψ) − (q̃ih, ψ) = − G(un
h, ψ),

where the first equation is obtained by plugging ((3.8)b) as well as ((3.7)c) into ((3.7)a), and the second equation is
obtained by plugging ((3.8)a) into ((3.7)b).

To implement the RKDG method, we need to prepare u∗

h , hence un,∗
ih . For n = 0, we take

u0
h = Πu0, u0,∗

ih = u0
h.

or n ≥ 1, we construct a Lagrangian interpolating polynomial u∗

h based on s + 2 points:

(t , un−1), (t + c τ , ũ ), (t , un),
n−1 h n−1 i ih n h

7
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H
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a

3

H

t

P

C

R
s
e
b
U
e
e

4

t
u

R
C
t

and set

un,∗
ih = u∗

h(x, tn + ciτ ).

owever, two drawbacks might show up with this simple extrapolation: (i) when s is large, interpolating polynomials
may be highly oscillatory, leading to instability or inaccuracy of the extrapolation from [tn−1, tn] to (tn, tn+1]; (ii) the order
f accuracy of the interpolation can be lower than the order of the RK method, putting another restriction on the overall
ccuracy of the resulting scheme.

.2. RKDG algorithm

Let U∗

h (x, t) be the Lagrangian interpolation polynomial based on the interpolating points

(tn−1,Un−1
h ), (tn−1 + ciτ , Ũih) and (tn,Un

h ), i = 1, 2, . . . , s.

ere, Ũih = Π Ũi is the piecewise L2 projection of Ũi in ((3.8)b) from (tn−1, tn].
The RKDG algorithm goes as follows: Given un

h,U
n, u∗

h(x, tn + ciτ ) and U∗

h (x, tn + ciτ ), i = 1, 2, . . . , s, we explore a
wo-step prediction–correction.

rediction Set ũ0
ih = u∗

h(x, tn + ciτ ), Ũ0
ih = U∗

h (x, tn + ciτ ), we iteratively solve(
ξm+1
ih , φ

)
= − G(q̃m+1

ih , φ) −

(
H(ũm

ih)Ũ
m
ih , φ

)
, m = 0, 1, . . . , (3.14a)

(q̃m+1
ih , ψ) =G(ũm+1

ih , ψ), ∀φ,ψ ∈ Vh, (3.14b)

and

ũm+1
ih =un

h + τ

s∑
j=1

aijξm+1
jh , (3.15a)

lm+1
i =

1
2
H(ũm+1

ih )ξm+1
ih , (3.15b)

Ũm+1
i =Un

h + τ

s∑
j=1

aijlm+1
j , (3.15c)

Ũm+1
ih =Π Ũm+1

i . (3.15d)

We stop the iteration and set un,∗
ih = ũL

ih, where L ≥ 0 is either a priori given integer, or L ≥ 1 such that
maxi ∥ũL

ih − ũL−1
ih ∥∞ < Tol.

orrection With the predicted un,∗
ih , we apply RKDG to update the numerical solution, and also set

Ũih = Π Ũi

for the update in the next time step.

emark 3.2. The energy (1.4) when discretized in spatial variable by the DG method becomes the energy (2.6). The
emi-discrete DG scheme (2.4) satisfies a discrete energy dissipation law. The closeness of these versions of energy is
xpected due to the high order of accuracy of the DG scheme. Such dissipation law still holds true at the fully discrete level
y the IEQ time discretization, yet the modified energy (3.4) can deviate from (2.6) due to the use of auxiliary variable
. However, with an appropriate number of iterations (L) in the prediction step, they can be very close. A numerical
xample (Example 4.4) is given to demonstrate how the prediction step helps to reduce the difference of the two energy
xpressions. This energy deviation issue has also been recently addressed in [46,47] using relaxation techniques.

. Numerical results

In this section, we numerically test the orders of convergence of the proposed RKDG schemes. Further, we apply
he schemes to the 2D Swift–Hohenberg equation in order to recover some known patterns, while we also verify the
nconditional energy stability at the same time. Before going further two remarks are in order:

emark 4.1 (The Choice of C0). To ensure the energy stability it suffices to take C0 > − infΦ(u). We observe that a larger
0 can help to reduce the spatial projection error when associated with the DG discretization. For example, let ΠU0 be
he piecewise L2 projection of U0 in Vh based on P1 polynomials, then the projection error is known as

∥U −ΠU ∥ = Ch|U | , (4.1)
0 0 0 H1(Ω)

8
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f
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s

a

T

c

t

H
p

d

T

where C is independent of h and U0. Note that

|U0|
2
H1(Ω) =

∑
K∈Ω

∫
K

(
Φ ′(u0)

√
Φ(u0) + C0

)2

|∇u0|
2dx,

rom which we see that a larger C0 will reduce the total error.

emark 4.2 (The Choice of the RK Method). A variety of algebraically stable RK methods have been introduced in the
iterature, see, e.g., [45]. Here we recall three methods in the form of the Butcher tableau. Qin and Zhang’s two-stage,
econd order diagonally implicit RK method [48],

c A
bT =

1
4

1
4 0

3
4

1
2

1
4

1
2

1
2

, M =

[
0 0

0 0

]
, (4.2)

Crouzeix’s two-stage, third order diagonally implicit RK method [49],

c A
bT =

1
2 +

√
3
6

1
2 +

√
3
6 0

1
2 −

√
3
6 −

√
3
3

1
2 +

√
3
6

1
2

1
2

, M =

(
1
4

+

√
3
6

)[
1 −1

−1 1

]
, (4.3)

nd the two-stage, fourth order Gauss–Legendre method [50],

c A
bT =

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

, M =

[
0 0

0 0

]
. (4.4)

hese RK methods will be adopted in our numerical experiments.

The experimental orders of convergence (EOC) at T = nτ in terms of h and τ are determined respectively by

EOC = log2

(
enh
enh/2

)
, EOC = log2

(
enh
e2nh

)
,

where enh represents the error between the numerical solution un
h(x, y) and the exact solution u(x, y, tn), and e2nh

orresponds to the numerical solution with τ/2 as the time step.
The Swift–Hohenberg equation is a special case of model equation (1.1) with a = 1 and

Φ(u) = −
ϵ

2
u2

−
g
3
u3

+
u4

4
, (4.5)

hat is,

ut = −∆2u − 2∆u + (ϵ − 1)u + gu2
− u3. (4.6)

ere physical parameters are g ≥ 0 and ϵ ∈ R, which together with the size of the domain play an important role in
attern selection; see, e.g., [51–53]. In our numerical tests, we focus on (4.5) with g ≥ 0 and ϵ > 0. This function has

ouble wells with two local minimal values at u± =
g±

√
g2+4ϵ
2 such that Φ ′(u±) = 0, and

Φ(u) ≥ min{Φ(u±)} = min
v=u±

(
−

1
12

(
gv(g2

+ 4ϵ) + ϵ(g2
+ 3ϵ)

))
= −b,

so it suffices to choose the method parameter C0 ≥ b. In all numerical examples b < 1, together with the discussion in
Remark 4.1, we will take C0 = 103 for all examples.

Example 4.1 (Spatial Accuracy Test). Consider the Swift–Hohenberg equation (4.6) with an added source of form

f (x, y, t) = −εv − gv2 + v3, v := e−t/4 sin(x/2) sin(y/2),

subject to initial data

u0(x, y) = sin(x/2) sin(y/2). (4.7)

his problem has an explicit solution

u(x, y, t) = e−t/4 sin(x/2) sin(y/2). (4.8)
9
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M

u
a

Table 1
L2, L∞ errors and EOC at T = 0.01 with mesh N × N .
k τ N = 8 N = 16 N = 32 N = 64

Error Error Order Error Order Error order

1 1e−3 ∥u − uh∥L2 3.73985e−01 9.73764e−02 1.94 2.39651e−02 2.02 5.95959e−03 2.01
∥u − uh∥L∞ 1.38441e−01 3.83905e−02 1.85 9.61382e−03 2.00 2.40153e−03 2.00

2 1e−4 ∥u − uh∥L2 7.10034e−02 1.50739e−02 2.24 2.02727e−03 2.89 2.58614e−04 2.97
∥u − uh∥L∞ 2.41033e−02 3.22536e−03 2.90 4.40302e−04 2.87 5.63426e−05 2.97

3 2e−5 ∥u − uh∥L2 1.20130e−02 1.13186e−03 3.41 7.72408e−05 3.87 4.94306e−06 3.97
∥u − uh∥L∞ 3.85682e−03 3.68735e−04 3.39 2.43500e−05 3.92 1.53904e−06 3.98

Table 2
L2, L∞ errors and EOC at T = 1.5 with time step τ .
RK L τ = 2−2 τ = 2−3 τ = 2−4 τ = 2−5

Error Error Order Error Order Error order

(4.2) 0 ∥u − uh∥L2 5.84575e−02 1.29975e−02 2.17 3.21365e−03 2.02 8.05270e−04 2.00
∥u − uh∥L∞ 5.51717e−03 1.13568e−03 2.28 2.80093e−04 2.02 7.04859e−05 1.99

(4.3) 2 ∥u − uh∥L2 6.49591e−03 7.15397e−04 3.18 8.88739e−05 3.01 9.69107e−06 3.20
∥u − uh∥L∞ 7.59053e−04 1.09547e−04 2.79 1.37766e−05 2.99 1.46945e−06 3.23

(4.4) 2 ∥u − uh∥L2 2.10020e−03 1.38306e−04 3.92 7.30941e−06 4.24 – –
∥u − uh∥L∞ 3.43273e−04 2.20772e−05 3.96 1.42833e−06 3.95 – –

To be specific, we take ε = 0.025, g = 0, and domain Ω = [−2π, 2π ]
2 with periodic boundary conditions. We shall test

the RKDG algorithm based on the RK method with Butcher tableau (4.4) and Pk polynomials. Note that due to the source
term, we need to add

(f (·, tn + biτ ), φ),

to the right hand side of both (3.7)a and (3.14a). In prediction step, we take L = 10 and tolerance Tol = 10−10. This
example is used to test the spatial accuracy, using polynomials of degree k with k = 1, 2, 3 on 2D rectangular meshes.
Both errors and orders of convergence at T = 0.01 are reported in Table 1. These results confirm the (k + 1)th orders of
accuracy in L2, L∞ norms.

Example 4.2 (Temporal Accuracy Test). Consider the Swift–Hohenberg equation (4.6) with an added source of form

f (x, y, t) = −εv − gv2 + v3, v := e−49t/64 sin(x/4) sin(y/4),

subject to initial data

u0(x, y) = sin(x/4) sin(y/4). (4.9)

Its exact solution is given by

u(x, y, t) = e−49t/64 sin(x/4) sin(y/4).

We want to test the temporal accuracy of the RKDG algorithm, for which we take ε = 0.025, g = 0, and domain
Ω = [−4π, 4π ]

2 with periodic boundary conditions. We apply the two-stage RKDG algorithm based on second, third
and fourth order RK methods with Butcher tableau (4.2)–(4.4) and P3 polynomials. Similar to Example 4.1, we also need
to add

(f (·, tn + biτ ), φ),

to the right hand side of both ((3.7)a) and (3.14a). We take time steps τ = 2−m for 2 ≤ m ≤ 5 and mesh size 64 × 64.
In the prediction step, we choose the tolerance Tol = 10−10 and the value of L depends on the specific RK methods. The
L2, L∞ errors and orders of convergence at T = 1.5 are shown in Table 2, and these results confirm that the schemes as
tested can achieve the optimal orders of convergence in time.

Example 4.3 (Rolls and Hexagons). In this example, we simulate the formation and evolution of patterns of the Swift–
Hohenberg equation (4.6), which arises in the Rayleigh–Bénard convection. Following [5,54], we run the simulation from
t = 0 to t = 198 on a rectangular domainΩ = [0, 100]2, subject to random initial data and periodic boundary conditions.
odel parameters ε, g will be specified below for different cases.
We apply the RKDG algorithm based on the fourth order RK method with Butcher tableau (4.4) and P2 polynomials

sing mesh 128 × 128. In prediction step, we take L = 3 and tolerance Tol = 10−5. This example is used to test the spatial
ccuracy, using polynomials of degree k with k = 1, 2, 3 on 2D rectangular meshes. We take time step τ = 0.1, which
10
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Fig. 1. Evolution of periodic rolls.

Table 3
L∞ errors of the solutions for different L.
L t = 0 t = 6 t = 20 t = 40 t = 60 t = 120 t = 150 t = 198

0 0 0.0479 0.4606 0.8883 1.0519 1.2442 1.2591 1.2636
1 0 0.0517 0.0566 0.0557 0.0580 0.0876 0.0878 0.0472
2 0 0.0519 0.0551 0.0491 0.0446 0.0333 0.0289 0.0232

is much larger than that used in [5,54]. In the following two test cases, we output E(qnh,U
n
h ) − C0|Ω| instead of E(qnh,U

n
h )

to better observe the evolution of the original free energy E(u).

Test case 1. (Rolls) For parameters ε = 0.3, g = 0, we observe the periodic rolls for different times as shown in Fig. 1.
We see that the pattern evolves approaching the steady-state after t > 60, as also evidenced by the energy evolution plot
in Fig. 3a.

Test case 2. (Hexagons) The numerical simulations with the parameters ε = 0.1, g = 1.0 reveal vividly the formation
and evolution of the hexagonal pattern as shown in Fig. 2. The pattern at t = 1.2 is similar to that of rolls as shown in
Fig. 1. Similar to the pattern obtained by the IEQ-DG scheme in [5], we also observe that at a certain point before t = 40,
lines break up giving way to single droplets that take hexagonal symmetry. The steady state is approaching after t > 100.

The evolution of the patterns for both cases is shown to satisfy the energy dissipation law in Fig. 3. With the same
parameters ε, g as in [5], the RKDG algorithm can generate quite similar formation and evolution of both roll and
hexagonal patterns even with a larger time step.

Example 4.4. We still use Example 4.3 but with focus on the evolution of the modified energy E(qnh,U
n
h )−C0|Ω| in (3.4),

the original energy E(un
h, q

n
h) in (2.6), and their difference⏐⏐E(qnh,Un

h ) − C0|Ω| − E(un
h, q

n
h)
⏐⏐

when time step τ is not small. Again, we apply the RKDG algorithm based on the fourth order RK method with Butcher
tableau (4.4) and P2 polynomials using mesh 128 × 128. In the prediction step, we take tolerance Tol = 10−5, but different
number of iterations L = 0, 1, 2. We take the time step τ = 0.5, which is larger than τ = 0.1 used in Example 4.3. Below
we will take the solution with smaller τ in Example 4.3 as a reference solution.

Test case 1. (Rolls) For L = 0, 1, 2, the L∞ errors of the solutions with the reference solution at different t are shown in
Table 3, and the pattern snapshots at t = 40, 120, 198 are given in Fig. 4. From these results, we still observe the roll
patterns even τ is large. However, without the prediction step, namely L = 0, the pattern has a large error; for L = 1, 2,
the patterns are comparable to those obtained in Example 4.3 with Test case 1.
11
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Fig. 2. Evolution of hexagonal patterns.

Fig. 3. Energy evolution. (a) Rolls. (b) Hexagons.

The energy comparison results are given in Fig. 5, from which we find that (1) both the modified energy and the
original energy satisfy the energy dissipation law; (2) the difference between the modified energy and the original energy
is large for L = 0, but significantly reduced when using an appropriate prediction step, with L = 1 or L = 2.

We have also conducted experiments on Test case 2 with Hexagons, the observation is entirely similar, so we omit the
related results.

5. Concluding remarks

In this paper, we present a new class of arbitrarily high order, fully discrete DG schemes. These schemes have several
advantageous properties: (1) the schemes are all linear such that they are easy to implement and computationally
12
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Fig. 4. Evolution of periodic rolls: (a–c) L = 0; (d–f) L = 1; (g–i) L = 2.

fficient; (2) the schemes are uniquely solvable and unconditionally energy stable, these ensure that large time steps
an be used in long time simulations; (3) the schemes can reach arbitrarily high order of accuracy in both space and time,
o that desired accuracy of solutions can be guaranteed with flexible meshes and time steps; (4) the schemes do not
epend on the specific form of the DG operator explicitly, hence applicable to a larger class of semi-discrete DG schemes
s long as they satisfy a semi-discrete energy dissipation law. The special structure of the DG formulation is nicely used
n the proof for energy stability. In addition, the prediction step in the RKDG algorithm is shown to be helpful in resolving
he issue with IEQ that the auxiliary variable deviates from its original counterpart due to numerical errors accumulated
hrough time discretization. Several numerical examples are presented to assess the scheme performance in terms of
ccuracy and energy stability. The numerical results on two dimensional pattern formation problems indicate that the
ethod is able to deliver expected patterns of high accuracy with a larger time step on coarse meshes.
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Fig. 5. Energy evolution. (a–b) L = 0; (c–d) L = 1; (e–f) L = 2.
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