
Journal of Computational and Applied Mathematics 393 (2021) 113518

v

w

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Regularity and finite element approximation for
two-dimensional elliptic equationswith line Dirac sources
Hengguang Li a, Xiang Wan b, Peimeng Yin a,∗, Lewei Zhao c

a Wayne State University, Department of Mathematics, Detroit, MI 48202, United States of America
b The George Washington University, Department of Mathematics, Washington, DC 20052, United States of America
c Beaumont Health System, Department of Radiation Oncology, Royal Oak, MI 48073, United States of America

a r t i c l e i n f o

Article history:
Received 16 May 2020
Received in revised form 17 February 2021

Keywords:
Singular line
Weighted Sobolev space
Regularity
Finite element method
Graded meshes

a b s t r a c t

We study the elliptic equation with a line Dirac delta function as the source term subject
to the Dirichlet boundary condition in a two-dimensional domain. Such a line Dirac
measure causes different types of solution singularities in the neighborhood of the line
fracture. We establish new regularity results for the solution in a class of weighted
Sobolev spaces and propose finite element algorithms that approximate the singular
solution at the optimal convergence rate. Numerical tests are presented to justify the
theoretical findings.
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1. Introduction

Let Ω ⊂ R2 be a polygonal domain and let γ be a line segment strictly contained in Ω . Consider the elliptic boundary
alue problem{

−∆u = δγ in Ω,
u = 0 on ∂Ω,

(1.1)

here the source term δγ is the line Dirac measure on γ , namely,

⟨δγ , v⟩ =

∫
γ

v(s)ds, ∀ v ∈ L2(γ ).

Such equations occur in many mathematical models including monophasic flows in porous media, tissue perfusion or
drug delivery by a network of blood vessels [1] and elliptic optimal control problems with controls acting on a lower
dimensional manifold [2]. Note that the line Dirac measure δγ is not an L2 function. Although the solution tends to be
smooth in a large part of the domain, it can become singular in the region close to the one-dimensional (1D) fracture
γ and in the region close to the vertices of the domain, where the corner singularities are expected to rise. Since the
corner singularity associated to Eq. (1.1) is understood fairly well in the literature, we shall address the concerns on the
regularity of the solution near γ and on the efficacy of the numerical approximation.

Finite element approximations for second order elliptic equations with singular source terms have attracted consider-
able attention and many studies have focused on point singular measures. Babuška [3], Scott [4,5], and Casas [6] studied
the convergence in the L2 (or Hϵ with small ϵ) norm for Dirac measures centered at some points in 2D; and a review of
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the convergence rates can be found in [7], in which the authors considered the Dirac measures centered at some points in
both 2D and 3D and showed that for P1 finite elements quasi-optimal order and for higher order finite elements optimal
order a priori estimates on a family of quasi-uniform meshes in L2-norm on a subdomain excludes the locations of the
elta source terms. For a Dirac measure centered at a point in a N-dimensional domain with N ≥ 2, locally refined meshes
round the singular point were used in [8] to improve the convergence rate. Graded meshes were used in [9] to study
he convergence rate of the finite element approximation for a point Dirac measure in 2D and L2 error estimate of order
2
|ln h|

3
2 was obtained for approximations based on P1 polynomials. More recently, 1D singular source terms have also

attracted some attention. In [10,11], finite element immersed interface methods were studied for interfaces problems,
which can be written as (1.1) with γ being a closed loop. By assuming the regularity of an elliptic equation in 3D with a
Dirac measure concentrated on a 1D fracture in a weighted Sobolev space, optimal finite element convergence rates were
obtained in [1,12] by using graded meshes. Then the authors in [13] derived the 3D regularity for the simplified equation
in [1,12] when the Dirac measure concentrated on a line or segment fracture.

In this paper, we derive regularity estimates and propose optimal finite element algorithms for Eq. (1.1). In particular,
we investigate the solution regularity in a class of Kondratiev-type weighted spaces. Note that the smoothness of the
solution varies in different parts of the domain: the region close to the vertices, the neighborhood of the fracture γ , and
the rest of the domain (Remark 3.1). By studying the local problem that inherits the line Dirac measure from Eq. (1.1),
we obtain a ‘‘full-regularity" estimate in these weighted spaces in the neighborhood of γ . The key idea is to exploit the
connection between the line Dirac measure and proper elliptic transmission problems in these weighted spaces. Based on
the new regularity results and the existing regularity estimates on corner singularities, we in turn propose graded mesh
refinement algorithms, such that the associated finite element methods of any order recover the optimal convergence rate
in the energy norm even when the solution is singular. We study the model problem (1.1) with a simple line fracture to
simplify the exposition and avoid nonessential complications in analysis. These results can be extended to more general
cases, including the case where the single line fracture is replaced by multiple line fractures, whether intersecting or
non-intersecting. With proper modifications, we also expect these analytical tools will be useful in the case when γ is a
smooth curve and when the source term δγ is replaced by qδγ for q ∈ L2(γ ).

The rest of the paper is organized as follows. In Section 2, we discuss the well-posedness and global regularity
of Eq. (1.1) in Sobolev spaces. In Section 3, we introduce the weighted spaces and derive the regularity estimates for the
solution in the neighborhood of γ . The main regularity results, summarized in Theorem 3.8, imply that in addition to the
lack of regularity in the direction across γ , the solution also possesses isotropic singularities at the endpoints of the line
fracture. In Section 4, we propose the finite element approximation of Eq. (1.1) based on a simple and explicit construction
of graded meshes (Algorithm 4.1 and Remark 4.2). We further show that the proposed numerical methods achieve the
optimal convergence rate by local interpolation error analysis in weighted spaces. We present various numerical test
results in Section 5 to validate the theory.

Throughout the text below, we denote by ab the line segment with endpoints a and b. The generic constant C > 0
in our estimates may be different at different occurrences. It will depend on the computational domain, but not on the
functions involved or the mesh level in the finite element algorithms.

2. Well-posedness and regularity in Sobolev spaces

2.1. Well-posedness of the solution

Denote by Hm(Ω), m ≥ 0, the Sobolev space that consists of functions whose ith (0 ≤ i ≤ m) derivatives are square
integrable. Let L2(Ω) := H0(Ω). Denote by H1

0 (Ω) ⊂ H1(Ω) the subspace consisting of functions with zero trace on the
boundary ∂Ω . The variational formulation for Eq. (1.1) is

a(u, v) :=

∫
Ω

∇u · ∇vdx = ⟨δγ , v⟩, ∀ v ∈ H1
0 (Ω). (2.1)

According to the trace estimate [14], v|γ is well defined in L2(γ ) for v ∈ H1(Ω). Therefore, it is clear that there exists a
unique solution u ∈ H1

0 (Ω) defined by (2.1). However, the solution has limited regularity because of the singular source
term δγ /∈ L2(Ω). In the rest of this section, we present the global regularity estimates for the solution in the domain.

2.2. Regularity in Sobolev spaces

We begin with the regularity estimates of problem (1.1) in Sobolev spaces Hm. We first have the following result
regarding the line Dirac measure δγ .

Lemma 2.1. Let Ω ⊂ R2 be a bounded domain. Then δγ ∈ H−
1
2 −ϵ(Ω) for any ϵ > 0.
2
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Proof. The proof is based on the duality pairing (cf. [14]). Given ϵ > 0 and v ∈ H
1
2 +ϵ(Ω), by Hölder’s inequality and the

race estimate [14,15], we have

⟨δγ , v⟩ =

∫
γ

v(s)ds ≤ C∥v∥L2(γ ) ≤ C∥v∥
H

1
2 +ϵ (Ω)

.

herefore, by the standard definition, we have

∥δγ ∥
H−

1
2 −ϵ (Ω)

:= sup{⟨δγ , v⟩ : ∥v∥
H

1
2 +ϵ (Ω)

= 1} ≤ C,

hich completes the proof. □

Consequently, we have the following global regularity estimate for the solution.

emma 2.2. Given ϵ > 0, the solution of Eq. (1.1) satisfies u ∈ H
3
2 −ϵ(Ω) ∩ H1

0 (Ω).

Proof. From Lemma 2.1, it follows δγ ∈ H−
1
2 −ϵ(Ω). Then the standard elliptic regularity theory [16] leads to the

conclusion. □

Thus, by Lemma 2.2 and the Sobolev embedding theorem [17], we obtain

Corollary 2.1. The solution u of Eq. (1.1) is Hölder continuous u ∈ C0,1/2−ϵ(Ω) for any small ϵ > 0. In particular, the solution
u ∈ C0(Ω).

Based on Lemma 2.2 and Corollary 2.1, the solution is merely in H
3
2 −ϵ(Ω) for ϵ > 0. The lack of regularity is largely due

o the singular line Dirac measure δγ in the source term. However, regularity is a local property. Such solution singularity
hall occur only in the neighborhood of γ . In a large part of the domain, the solution is reasonably smooth. Hence, we
hall study the regularity of Eq. (1.1) in some weighted Sobolev spaces that can accurately characterize the local behavior
f the solution.

. Regularity estimates in weighted spaces

Recall the domainΩ and the line segment γ in Eq. (1.1). Without loss of generality, we assume γ = {(x, 0), 0 < x < 1}
ith the endpoints Q1 = (0, 0) and Q2 = (1, 0) as shown in Fig. 1. Let V be the singular set, which is the collection of
1, Q2, and all the vertices of Ω . In this section, we first study an auxiliary transmission problem in Sections 3.1 and 3.2.
hen, we obtain the regularity estimates for Eq. (1.1) in Section 3.3.

.1. The transmission problem

Consider the equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆w = 0 in Ω \ γ ,

w+

y = w−

y − 1 on γ ,

w+
= w− on γ ,
w = 0 on ∂Ω,

(3.1)

here wy = ∂yw. Here, for a function v, v±
:= limϵ→0 v(x, y ± ϵ). It is clear that Eq. (3.1) has a unique weak solution

w ∈ H1(Ω \ γ ) ∩ {w|∂Ω= 0}.

emark 3.1. We define different regions of the domain as follows for further local regularity estimates. Denote by H+

nd H− the upper and lower half planes, respectively. Define γ0 = {(x, 0) : d ≤ x ≤ 1 − d} ⊂ γ for some small d > 0.
hen we choose two open subsets Ω+

⊂ Ω ∩H+ and Ω−
⊂ Ω ∩H−, each of whom has a smooth boundary and is away

rom ∂Ω , such that γ0 = Ω+ ∩Ω−. Let B(x0, r) be the ball centered at x0 with radius r . Denote by Bi = B(Qi, 2d), i = 1, 2,
the neighborhoods around the endpoints of γ . See Fig. 2. We assume d is sufficiently small such that B1 ∩ B2 = ∅ and
(B1∪B2)∩∂Ω = ∅. Therefore, the domainΩ is divided into three regions: (i) the interior region R1 = Ω+

∪Ω− away from
the set V , (ii) the region R2 = B1 ∪ B2 consisting of the neighborhoods of the endpoints of γ , and (iii) R3 = Ω \ (R̄1 ∪ R̄2)
is the region close to the boundary ∂Ω .

Remark 3.2. In region R3, the solution regularity in (3.1) is determined by the geometry of the domain. In particular,
the solution can possess singularities near the non-smooth points (vertices) of the boundary. The regularity estimates
in this region are well understood in the literature. See for example [18–22] and references therein. Therefore, we shall
concentrate on the regularity analysis in regions R and R for Eq. (3.1).
1 2

3
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Fig. 1. Domain Ω containing a line fracture γ .

Fig. 2. Decomposition around the singular line: Ω+,Ω−, B1 and B2 .

We now introduce a class of Kondratiev-type weighted spaces for the analysis of Eq. (3.1).

Definition 3.1 (Weighted Sobolev Spaces). Recall the set V that consists of the endpoints of γ and all the vertices of the
omain Ω . Let ri(x,Qi) be the distance from x to Qi ∈ V and let

ρ(x) = ΠQi∈V ri(x,Qi). (3.2)

or a ∈ R, m ≥ 0, and G ⊂ Ω , we define the weighted Sobolev space

Km
a (G) := {v, ρ|α|−a∂αv ∈ L2(G),∀ |α| ≤ m},

where the multi-index α = (α1, α2) ∈ Z2
≥0, |α| = α1 + α2, and ∂α = ∂

α1
x ∂

α2
y . The Km

a (G) norm for v is defined by

∥v∥Km
a (G) =

( ∑
|α|≤m

∫∫
G
|ρ|α|−a∂αv|

2
dxdy

) 1
2 .

Remark 3.3. According to Definition 3.1, in the region that is away from the set V , the weighted space Km
a is equivalent

to the Sobolev space Hm. In the region R3 (see Remark 3.1) that is close to the vertices of the domain, the space Km
a is the

same Kondratiev space for analyzing corner singularities [19–21]. In contrast to the Kondratiev space where the weight is
the distance function to the vertex set, the weight in the space Km

a also consists of the distance function to the endpoints
of γ . In particular, for i = 1, 2, in the neighborhood Bi (Fig. 2) of an endpoint Qi of γ , the weighted space can be written
as

Km
a (Bi) = {v, r |α|−a

i ∂αv ∈ L2(Bi),∀ |α| ≤ m}.

In each Bi, we further define χi ∈ C∞

0 (Bi) that satisfies

χi =

{
1 in B(Qi, d),
0 on ∂Bi.

Note that supp(χ1)∩supp(χ2) = ∅. In addition, we denote by

W = span{χi}, i = 1, 2, (3.3)

the linear span of these two functions.
4
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3.2. Regularity estimates for Eq. (3.1)

We now proceed to carry out the regularity analysis for the transmission problem (3.1). Recall the interior region
R1 = Ω+

∪Ω− in Remark 3.1. We start with the regularity analysis for the solution in R1.

emma 3.4. The solution of Eq. (3.1) is smooth in either Ω+ or in Ω−. Namely, for any m ≥ 1, w ∈ Hm+1(Ω+) and
w ∈ Hm+1(Ω−).

Proof. Recall that Ω+ and Ω− are regions with a smooth boundary. Therefore, by the trace estimate, for m ≥ 1, we can
ind two functions wU ∈ Hm+1(Ω+) and wD ∈ Hm+1(Ω−) such that wU = wD and ∂wU

∂y =
∂wD
∂y −1 on γ0 := Ω+ ∩Ω− ⊂ γ .

Define

w0 =

{
wU in Ω+,

wD in Ω−.

Then w − w0 satisfies the standard transmission problem with a smooth interface⎧⎪⎨⎪⎩
−∆(w − w0) = ∆w0 in (Ω+

∪Ω−),
(w − w0)+y = (w − w0)−y on γ0,

(w − w0)+ = (w − w0)− on γ0.

Therefore, by the regularity results in [22,23], we have w−w0 ∈ Hm+1(Ω+) and w−w0 ∈ Hm+1(Ω−), which leads to the
desired result. □

We now concentrate on the solution behavior in the neighborhood Bi, i = 1, 2, of an endpoint of γ (see Remark 3.1).
We first consider the following problem with a simpler transmission condition on γ ,⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆z = f in Bi \ γ ,

z+

y = z−

y on γ ∩ Bi,

z+
= z− on γ ∩ Bi,

z = 0 on ∂Bi.

(3.4)

We recall a regularity result in [22] regarding z in the neighborhood of Qi.

Lemma 3.5. For Eq. (3.4), there exists bQi > 0 such that the following statement holds. Let 0 < a < bQi and m ≥ 1. Assume
f ∈ Km−1

a−1 (Bi \ γ ). Recall the finite dimensional space W in (3.3). Then, there exists a unique decomposition z = zreg + zs, such
that zreg ∈ Km+1

a+1 (B(Qi, d) \ γ ) and zs ∈ W. Moreover, it follows

∥zreg∥Km+1
a+1 (B(Qi,d)\γ )

+ ∥zs∥L∞(Bi) ≤ C∥f ∥Km−1
a−1 (Bi\γ )

,

where the constant C > 0 is independent of f .

Remark 3.6. Based on the calculation in [22], the constant bQi is determined by the smallest positive eigenvalue of the
operator −∂2θ in (0, 2π ) with the periodic boundary condition. Note that k2, k ∈ Z≥0, are these eigenvalues. Thus, it follows
bQi = 1.

Recall the solution w of the transmission problem (3.1). Recall the space W in (3.3). Then, in the neighborhood Bi of
Qi, i = 1, 2, we have the following regularity result.

Theorem 3.7. Let Bd,i := B(Qi, d) ⊂ Bi, i = 1, 2. Then, in Bd,i, the solution w of Eq. (3.1) admits a decomposition

w = wreg + ws,

where ws ∈ W and wreg ∈ Km+1
a+1 (Bd,i \ γ ) for 0 < a < 1 and m ≥ 1. Moreover, we have

∥wreg∥Km+1
a+1 (Bd,i\γ )

+ ∥ws∥L∞(Bi) ≤ C .

Proof. We shall derive the theorem in Bd,1. The proof in Bd,2 can be carried out in a similar manner. Let (r, θ ) be the
local polar coordinates in B1 for which Q1 is at the origin and θ = 0 corresponds to the positive x-axis. We shall use
a localization argument to obtain the estimate. In the rest of the proof, we simplify the notation for Bd,1 by letting
B = B .
d d,1

5
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Step 1. Let η ∈ C∞

0 (B1) be a cutoff function such that η = 1 in Bd, η = 0 for r > 3d/2, and ηθ := ∂θη = 0. Define
:= ηw. Note that on γ (θ = 0, 2π ), we have

q+

y = (sin θ )+q+

r +
(cos θ )+

r
q+

θ =
1
r
q+

θ

=
1
r
ηw+

θ = η

(
(sin θ )+w+

r +
(cos θ )+

r
w+

θ

)
= ηw+

y ,

where for a function v(r, θ ), v±
:= limϵ→0 v(r, θ±ϵ).With a similar calculation, we have q−

y = ηw−
y on γ . Then, according

to the transmission condition in Eq. (3.1), we have

q+

y = ηw+

y = η(w−

y − 1) = q−

y − η, on γ .

Consequently, q satisfies the following equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆q = −∆(wη) in B1 \ γ ,

q+

y = q−

y − η on γ ,

q+
= q− on γ ,
q = 0 on ∂B1.

(3.5)

ote that based on the definition of η, in B1 \ γ , −∆(wη) = −2∇w · ∇η − w∆η and in Bd \ γ , −∆(wη) = 0.

Step 2. Define p(r, θ ) = −ηr sin θ
2 for 0 ≤ θ ≤ 2π , where η is defined in Step 1. Then p ∈ H1(B1) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆p = ∆

(
ηr sin

θ

2

)
in B1 \ γ ,

p+

y = (sin θ )+p+

r +
(cos θ )+

r
p+

θ = −
1
2
η on θ = 0,

p−

y = (sin θ )−p−

r +
(cos θ )−

r
p−

θ =
1
2
η on θ = 2π,

p = 0 on ∂B1.

(3.6)

t is worth noting that p ̸∈ H2(B1). However, by a straightforward calculation, it is clear that p ∈ Km+1
a+1 (B1 \ γ ) and

(ηr sin θ
2 ) ∈ Km−1

a−1 (B1 \ γ ) for any m ≥ 1 and 0 < a < 1.

Step 3. Let z = p − q. Then, based on Eqs. (3.1), (3.5), and (3.6), z satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆z = f in B1 \ γ ,

z+

y = z−

y on γ ,

z+
= z− on γ ,
z = 0 on ∂B1,

(3.7)

here f = ∆(wη) +∆(ηr sin θ
2 ). Note that by the fact ∆(wη) = 0 in Bd \ γ and by Lemma 3.4, f ∈ Km−1

a−1 (B1 \ γ ) for any
≥ 1 and 0 < a < 1. Applying Lemma 3.5 to Eq. (3.7), we conclude that there exists a unique decomposition z = zreg +zs,
ith zreg ∈ Km+1

a+1 (Bd \ γ ) and zs ∈ W , satisfying

∥zreg∥Km+1
a+1 (Bd\γ )

+ ∥zs∥L∞(B1) ≤ C∥f ∥Km−1
a−1 (B1\γ ). (3.8)

ince ηw = q = p − z, by the estimate (3.8) and by the definition of p in Step 2, we obtain the decomposition of w in
d \ γ :

w = wreg + ws,

here wreg = p − zreg and ws = −zs, such that for any m ≥ 1 and 0 < a < 1,

∥wreg∥Km+1
a+1 (Bd\γ )

+ ∥ws∥L∞(B1) ≤ C∥f ∥Km−1
a−1 (B1\γ ) + ∥p∥Km+1

a+1 (Bd\γ )
< C,

hich completes the proof. □

.3. Regularity estimates for Eq. (1.1)

Recall that V consists of the endpoints of γ and all the vertices of Ω . Recall Bd,i := B(Qi, d) in Theorem 3.7, and the
egions Ω+, Ω−, R3 in Remark 3.1. We are now ready to derive the regularity estimate for the solution of Eq. (1.1) with
he line Dirac measure.
6
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Fig. 3. A small neighborhood Rϵ of the line fracture γ .

Theorem 3.8. The solution u of Eq. (1.1) is smooth in the region away from the set V , namely, for m ≥ 1, u ∈ Hm+1(Ω+)
and u ∈ Hm+1(Ω−). In the neighborhood of each endpoint of γ , u admits a decomposition

u = ureg + us, us ∈ W ,

such that for any m ≥ 1 and 0 < a < 1,

∥ureg∥Km+1
a+1 (Bd,i\γ )

+ ∥us∥L∞(Bi) ≤ C .

In the region R3 away from γ and close to the boundary, u ∈ Km+1
a+1 (R3) for m ≥ 1 and 0 < a < π

ω
, where ω is the largest

interior angle among all the vertices of the domain Ω .

Proof. Recall the solution w of the transmission problem (3.1). We shall show u = w. We first extend w to Ω by defining

w :=

{
w in Ω\γ ,

w+(= w−) on γ .

For ϵ > 0 small, define Rϵ := {(−ϵ, 1+ ϵ)× (−ϵ, ϵ)} to be a small neighborhood of γ . Let nϵ be the unit outward normal
vector to ∂Rϵ . See Fig. 3. Let ũ = u − w. Then for any φ ∈ C∞

0 (Ω), it follows

−

∫∫
Ω

∆ũφdxdy = −

∫∫
Ω

∆uφdxdy +

∫∫
Ω

∆wφdxdy

=

∫∫
Ω

δγφdxdy +

∫∫
Ω\Rϵ

∆wφdxdy +

∫∫
Rϵ
∆wφdxdy

=

∫
γ

φds +

∫∫
Ω\Rϵ

∆wφdxdy −

∫∫
Rϵ

∇w · ∇φdxdy +

∫
∂Rϵ

∇w · nϵφds.

(3.9)

For each term on the right hand side of (3.9), we have the following estimates. In particular,∫
∂Rϵ

∇w · nϵφds =

∫ 1+ϵ

−ϵ

(wy(x, ϵ) − wy(x,−ϵ))φdx +

∫ ϵ

−ϵ

(wx(1 + ϵ, y) − wx(−ϵ, y))φdy.

By (3.1) we have∫∫
Ω\Rϵ

∆wφdxdy = 0.

As ϵ → 0, due to the boundedness of |∇w| in Rϵ , it follows∫∫
Rϵ

∇w · ∇φdxdy → 0;

and by the transmission condition in (3.1), we further have∫
∂Rϵ

∇w · nϵφds →

∫ 1

0
(wy(x, 0+) − wy(x, 0−))φdx = −

∫
γ

φdx.

Incorporating the above estimates into (3.9), we have

−

∫∫
∆ũφdxdy = 0, ∀ φ ∈ C∞

0 (Ω).

Ω

7
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Fig. 4. The new node of the edge pq (left–right): no singular vertices (midpoint); p is a singular point (|pr| = κp|pq|, κp < 0.5).

We then conclude that

−∆ũ = 0 in Ω.

Note that ũ = u − w = 0 on ∂Ω , then it follows ũ = 0 in Ω , namely, u = w in Ω .
Therefore, the regularity estimates for u in Ω+, Ω−, and in Bd,i, i = 1, 2 can be derived from the corresponding

estimates for w in Lemma 3.4 and in Theorem 3.7. The regularity estimates for u in R3 follow from the results in [20,21]
for elliptic Dirichlet problems in polygonal domains. □

4. Optimal finite element methods

According to Lemma 2.2, the solution of Eq. (1.1) is merely in H
3
2 −ϵ(Ω) for any ϵ > 0. The singularities in the solution

an severely slow down the convergence of the usual finite element method associated with a quasi-uniform mesh. In
his section, we propose new finite element algorithms to approximate the solution of Eq. (1.1) that shall converge at the
ptimal rate.

.1. The finite element method

Let T = {Ti} be a triangulation of Ω with triangles. For m ≥ 1, we denote the Lagrange finite element space by

S(T ,m) = {v ∈ C0(Ω) ∩ H1
0 (Ω) : v|T∈ Pm(T ), ∀ T ∈ T },

where Pm(T ) is the space of polynomials with degree no more than m on T . Following the variational form (2.1), we define
the finite element solution uh ∈ S(T ,m) of Eq. (1.1) by∫

Ω

∇uh · ∇vhdx =

∫
γ

vhdx, ∀ vh ∈ S(T ,m).

Suppose that the mesh T consists of quasi-uniform triangles with size h. Because of the lack of regularity in the solution
(u ∈ H

3
2 −ϵ(Ω)), the standard error estimate [17] yields only a sup-optimal convergence rate

∥u − uh∥H1(Ω) ≤ Ch
1
2 −ϵ, for ϵ > 0.

This is highly ineffective since the optimal convergence rate using the mth-degree polynomials when the solution is
mooth is

∥u − uh∥H1(Ω) ≤ Chm.

We now propose new finite element methods to solve equation (1.1) based on the special refinement of the triangles.
ecall that the singular set V includes the endpoints of γ and all the vertices of Ω . We call the points in V the singular
oints.

lgorithm 4.1 (Graded Refinements). Suppose each singular point is a vertex in the triangulation T and each triangle in T
ontains at most one singular point. We also suppose T conforms to γ . Namely, γ is the union of some edges in T and
oes not cross triangles in T . Let pq be an edge in the triangulation T with p and q as the endpoints. Then, in a graded
efinement, a new node r on pq is produced according to the following conditions:

1. (Neither p or q is a singular point.) We choose r as the midpoint (|pr| = |qr|).
2. (p is a singular point.) We choose r such that |pr| = κp|pq|, where κp ∈ (0, 0.5) is a parameter that will be specified

later. See Fig. 4 for example.

hen, the graded refinement, denoted by κ(T ), proceeds as follows. For each triangle in T , a new node is generated on
ach edge as described above. Then, T is decomposed into four small triangles by connecting these new nodes (Fig. 5).
iven an initial mesh T0 satisfying the condition above, the associated family of graded meshes {Tn, n ≥ 0} is defined

recursively Tn+1 = κ(Tn).

Remark 4.2. In Algorithm 4.1, we choose the parameter κp for each p ∈ V as follows. Recallm is the degree of polynomials
in the finite element space S(Tn,m). Then, if p is an endpoint of γ , we choose κp = 2−

m
a for any 0 < a < 1, and if p is a

vertex of the domain Ω , we choose κ < 2−
mω
π , where ω is the largest interior angle of the domain.
p

8
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Fig. 5. Refinement of a triangle △x0x1x2 . First row: (left–right): the initial triangle and the midpoint refinement; second row: two consecutive graded
efinements toward x0 = Q , (κ < 0.5).

Let Sn := S(Tn,m) be the finite element space of degree m associated with the graded meshes defined in Algorithm 4.1
and Remark 4.2. Then, we define the finite element solution un ∈ Sn as

a(un, vn) =

∫
Ω

∇un · ∇vndx =

∫
γ

vndx, ∀ vn ∈ Sn. (4.1)

ote that the bilinear form a(·, ·) is coercive and continuous on Sn. Thus, by Céa’s Theorem, we have

∥u − un∥H1(Ω) ≤ C inf
v∈Sn

∥u − v∥H1(Ω). (4.2)

n the rest of this section, we shall show that the proposed numerical solution un converges to the solution u of (1.1) in
he optimal rate.

.2. Interpolation error estimates

Recall the three regions R1, R2 and R3 of the domain Ω in Remark 3.1. R1 is the region that is away from the singular
et V . R2 is the region close to the endpoints of γ and R3 is the region close to the boundary of the domain. According
o the regularity analysis in Section 3, the solution of Eq. (1.1) behaves differently in these three regions. We therefore
ocus on the local interpolation error analysis in different regions.

.2.1. Interpolation error estimates in R1 and R3

emma 4.3. Recall the triangulation Tn in Algorithm 4.1 and Remark 4.2. Let T(0) ∈ T0 be an initial triangle and let uI be the
odal interpolation of u associated with Tn. If T̄(0) does not contain the endpoint of γ , then

∥u − uI∥H1(T(0)) ≤ Chm,

here h := 2−n.

roof. Note that if T̄0 does not contain the endpoint of γ , then T̄(0) ∩ V = ∅ or T̄(0) contains a vertex of the domain Ω .
f T̄(0) ∩ V = ∅, we have u ∈ Hm+1(T(0)) (Theorem 3.8) and the mesh on T(0) is quasi-uniform (Algorithm 4.1) with size
(2−n). Therefore, based on the standard interpolation error estimate, we have

∥u − uI∥H1(T(0)) ≤ Chm
∥u∥Hm+1(T(0)) ≤ Chm. (4.3)

n the case that T̄0 contains a vertex of the domain, the solution may be singular in the neighborhood of a corner. Based
n the results in [24], the solution u ∈ Km+1

a+1 (T(0)) for a < π
ω

and m ≥ 1, where ω is the largest interior angle of the
omain. Note that the graded mesh on T(0) with the parameter in Remark 4.2 is the same mesh defined in [22,24], which
an recover the optimal convergence rate in the finite element method even when the solution has corner singularities:

∥u − uI∥H1(T(0)) ≤ Chm. (4.4)

he proof is hence completed by (4.3) and (4.4). □
9
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Fig. 6. Mesh layers (left–right): the initial triangle T(0) with a vertex Q ; two layers after one refinement; three layers after two refinements.

.2.2. Interpolation error estimates in R2
We now study the interpolation error in the neighborhood of the endpoint Q of γ . In the rest of this subsection, we

ssume T(0) ∈ T0 is an initial triangle such that Q is a vertex of T . According to Remark 4.2, the mesh on T(0) is graded
toward Q with κQ = 2−

m
a for any 0 < a < 1. We first define mesh layers on T0 which are collections of triangles in Tn.

efinition 4.1 (Mesh Layers). Let T(i) ⊂ T(0) be the triangle in Ti, 0 ≤ i ≤ n, that is attached to the singular vertex Q of
T(0). For 0 ≤ i < n, we define the ith mesh layer of Tn on T(0) to be the region Li := T(i) \ T(i+1); and for i = n, the nth layer
is Ln := T(n). See Fig. 6 for example.

Remark 4.4. The triangles in Tn constitute n mesh layers on T(0). According to Algorithm 4.1 and the choice of grading
parameters in Remark 4.2, the mesh size in the ith layer Li is

O(κ i
Q2

i−n). (4.5)

Meanwhile, the weight function ρ in (3.2) satisfies

ρ = O(κ i
Q ) in Li (0 ≤ i < n) and ρ ≤ Cκn

Q in Ln. (4.6)

Although the mesh size varies in different layers, the triangles in Tn are shape regular. In addition, using the local
Cartesian coordinates such that Q is the origin, the mapping

Bi =

(
κ−i
Q 0
0 κ−i

Q

)
, 0 ≤ i ≤ n (4.7)

is a bijection between Li and L0 for 0 ≤ i < n and a bijection between Ln and T(0). We call L0 (resp. T(0)) the reference
egion associated to Li for 0 ≤ i < n (resp. Ln).

With the mapping (4.7), we have that for any point (x, y) ∈ Li, 0 ≤ i ≤ n, the image point (x̂, ŷ) := Bi(x, y) is in its
eference region. Moreover, we have the following dilation result.

emma 4.5. For 0 ≤ i ≤ n, given a function v(x, y) ∈ Kl
a(Li), the function v̂(x̂, ŷ) := v(x, y) belongs to Kl

a(L̂), where
x̂, ŷ) := Bi(x, y), L̂ = L0 for 0 ≤ i < n, and L̂ = T(0) for i = n. Moreover, it follows

∥v̂(x̂, ŷ)∥Kl
a(L̂)

= κ
i(a−1)
Q ∥v(x, y)∥Kl

a(Li)
.

roof. Let r be the distance from (x, y) to Q , then the distance from (x̂, ŷ) to Q is r̂ = κ−i
Q r . By definition, we have

∥v̂(x̂, ŷ)∥2
Kl

a(L̂)
=

∑
j+k≤l

∫
L̂
|r̂ j+k−a∂

j
x̂∂

k
ŷ v̂|

2
dx̂dŷ

=

∑
j+k≤l

∫
Li

|κ
−i(j+k−a)
Q r j+k−aκ

i(j+k)
Q ∂ jx∂

k
yv|

2
κ−2i
Q dxdy

=κ
i(2a−2)
Q

∑
j+k≤l

∫
Li

|r j+k−a∂ jx∂
k
yv|

2
dxdy = κ

i(2a−2)
Q ∥v∥2

Kl
a(Li)
,

hich completes the proof. □

We then derive the interpolation error estimate in each layer.

emma 4.6. Recall κQ = 2−
m
a for the graded mesh on T(0), m ≥ 1 and 0 < a < 1. Let uI be the nodal interpolation of u in

he ith layer Li on T(0), 0 ≤ i < n. Then, for h := 2−n, we have

|u − uI |H1(Li) ≤ Chm.
10
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Proof. Based on Theorem 3.8, the solution can be decomposed into two parts on T(0), u = ureg + us, where for m ≥ 1 and
0 < a < 1,

∥ureg∥Km+1
a+1 (T(0))

+ ∥us∥L∞(T(0)) ≤ C .

Since us ∈ W is smooth and belongs to a finite dimensional space, the norms of us are equivalent. Thus, we have

∥ureg∥Km+1
a+1 (T(0))

+ ∥us∥Hm+1(T(0)) ≤ C . (4.8)

Note that in each Li, i < n, the space Km+1
a+1 is equivalent to Hm+1. Therefore, both ureg and us are continuous functions

in Li. Let ureg,I and us,I be the nodal interpolations of ureg and us, respectively. Then, it is clear that uI = ureg,I + us,I . Thus,
we have

|u − uI |H1(Li) ≤ |ureg − ureg,I |H1(Li)
+ |us − us,I |H1(Li)

. (4.9)

We shall obtain the estimate for each term on the right hand side of (4.9).
Recall the mapping Bi in (4.7). For any point (x, y) ∈ Li, let (x̂, ŷ) = Bi(x, y) ∈ L0. Then, for a function v(x, y) in Li, define

ˆ(x̂, ŷ) := v(x, y) in L0. Using the standard interpolation error estimate, the scaling argument, the estimate in (4.5), and
he mapping in (4.7), we have

|ureg − ureg,I |H1(Li)
= |ûreg − ûreg,Î |H1(L0)

≤ C2(i−n)m
|ûreg |Hm+1(L0)

≤ C2(i−n)mκmi
Q |ureg |Hm+1(Li)

= Chm(2κQ )mi
|ureg |Hm+1(Li)

.

Recall κQ < 2−
m
a for any 0 < a < 1 and recall the estimate in (4.6). Then, continuing the estimate above, we obtain

|ureg − ureg,I |
2
H1(Li)

≤ Ch2m
∑

|α|=m+1

|ρ−1−aρm+1∂αureg |
2
L2(Li)

≤ Ch2m
∥ureg∥

2
Km+1

a+1 (Li)
, (4.10)

where the last step is based on definition of the weighted space.
For |us − us,I |H1(Li)

, by the fact that κQ < 0.5, we similarly have

|us − us,I |H1(Li)
= |ûs − ûs,Î |H1(L0)

≤ C2(i−n)m
|ûs|Hm+1(L0)

≤ C2(i−n)mκmi
Q |us|Hm+1(Li) = Chm

|us|Hm+1(Li). (4.11)

Then, the proof is completed by combining (4.9), (4.10), (4.11), and (4.8). □

We now derive the interpolation error estimate in the last layer Ln on T(0).

Lemma 4.7. Recall κQ = 2−
m
a for the graded mesh on T(0), m ≥ 1 and 0 < a < 1. Let uI be the nodal interpolation of u in

he nth layer Ln on T(0) for n sufficiently large. Then, for h := 2−n, we have

|u − uI |H1(Ln) ≤ Chm.

Proof. Recall from Theorem 3.8 that on T(0), u = ureg + us ∈ Km+1
a+1 + W (see also (4.8)). Let ureg,I and us,I be the nodal

interpolations of ureg and us, respectively. Recall us is a constant in the nth layer Ln when n is sufficiently large, and
therefore (us − us,I )|Ln= 0. Thus, it is sufficient to estimate |ureg − ureg,I |H1(Ln).

Recall the mapping Bn in (4.7). For any point (x, y) ∈ Ln, let (x̂, ŷ) = Bn(x, y) ∈ T(0). Then, for a function v(x, y) in Ln,
define v̂(x̂, ŷ) := v(x, y) in T(0). Let ψ : T(0) → [0, 1] be a smooth function that is equal to 0 in a neighborhood of Q , but
is equal to 1 at all the other nodal points in T0. Then, we let w = ψ ûreg in T(0). Consequently, we have for l ≥ 0

∥w∥
2
Kl

1(T(0))
= ∥ψ ûreg∥

2
Kl

1(T(0))
≤ C∥ûreg∥

2
Kl

1(T(0))
, (4.12)

where C depends on l and the smooth function ψ . Moreover, the condition ûreg ∈ Km+1
a+1 (T(0)) with a > 0 and m ≥ 1

implies ûreg (Q ) = 0 (see, e.g., [25, Lemma 4.7]). Let wÎ be the nodal interpolation of w associated with the mesh T0 on
T(0). Therefore, by the definition of w, we have

wÎ = ûreg,Î = ûreg,I in T(0). (4.13)

Note that the Kl
1 norm and the H l norm are equivalent for w on T(0), since w = 0 in the neighborhood of the vertex

Q . Let r be the distance from (x, y) to Q , and r̂ be the distance from (x̂, ŷ) to Q . Then, by the definition of the weighted
11
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space, the scaling argument, (4.12), (4.13), and (4.6), we have

|ureg − ureg,I |
2
H1(Ln)

≤ C∥ureg − ureg,I∥
2
K1

1(Ln)
≤ C

∑
|α|≤1

∥r(x, y)|α|−1∂α(ureg − ureg,I )∥2
L2(Ln)

= C
∑
|α|≤1

∥r̂(x̂, ŷ)|α|−1∂α(ûreg − ûreg,I )∥2
L2(T(0))

≤ C∥ûreg − w + w − ûreg,I∥
2
K1

1(T(0))

≤ C
(
∥ûreg − w∥

2
K1

1(T(0))
+ ∥w − ûreg,I∥

2
K1

1(T(0))

)
= C

(
∥ûreg − w∥

2
K1

1(T(0))
+ ∥w − wÎ∥

2
K1

1(T(0))

)
≤ C

(
∥ûreg∥

2
K1

1(T(0))
+ ∥w∥

2
Km+1

1 (T(0))

)
≤ C

(
∥ûreg∥

2
K1

1(T(0))
+ ∥ûreg∥

2
Km+1

1 (T(0))

)
= C

(
∥ureg∥

2
K1

1(Ln)
+ ∥ureg∥

2
Km+1

1 (Ln)

)
≤ Cκ2na

Q ∥ureg∥
2
Km+1

a+1 (Ln)

≤ C2−2nm
∥ureg∥

2
Km+1

a+1 (Ln)
≤ Ch2m,

where the ninth relationship is based on Lemma 4.5. This completes the proof. □

Therefore, for the finite element method solving equation (1.1) defined in Algorithm 4.1 and Remark 4.2, we obtain
the optimal convergence rate.

Theorem 4.8. Let Sn be the finite element space associated with the graded triangulation Tn defined in Algorithm 4.1 and
Remark 4.2. Let un ∈ Sn be the finite element solution of Eq. (1.1) defined in (4.1). Then,

∥u − un∥H1(Ω) ≤ Chm
≤ Cdim(Sn)−

m
2 ,

here h := 2−n and dim(Sn) is the dimension of Sn.

roof. By Céa’s Theorem (see (4.2)),

∥u − un∥
2
H1(Ω) ≤ C∥u − uI∥

2
H1(Ω) = C

∑
T(0)∈T0

∥u − uI∥
2
H1(T(0))

.

Based on the Poincaré inequality and Lemmas 4.6 and 4.7, if the initial triangle T(0) has an endpoint of γ as a vertex, we
have

∥u − uI∥
2
H1(T(0))

≤ Ch2m
= C2−2mn.

Summing up this estimate and the estimates in Lemma 4.3, and noting that based on Algorithm 4.1 dimSn = O(4n), we
obtain

∥u − un∥
2
H1(Ω) ≤ Ch2m

≤ Cdim(Sn)−m,

which completes the proof. □

Remark 4.9. The solution of Eq. (1.1) may possess singularities across the line segment γ , near the vertices of the domain,
and near the endpoints of γ . We have derived regularity results in weighted Sobolev spaces and proposed numerical
methods that solve equation (1.1) in the optimal convergence rate. These results can be extended to more general cases, for
example, the case where the line fracture is replaced by multiple line fractures, whether intersecting or non-intersecting.
With proper modifications, we also expect the analytical tools will be useful when γ is a smooth curve and when the
source term δγ is replaced by qδγ for q ∈ L2(γ ).

5. Numerical examples

In this section, we present numerical test results to validate our theoretical predictions for the proposed finite element
method solving equation (1.1). Since the solution u is unknown, we use the following numerical convergence rate

e = log2
|uj − uj−1|H1(Ω)

|uj+1 − uj|H1(Ω)
, (5.1)

here uj is the finite element solution on the mesh Tj obtained after j refinements of the initial triangulation T0. According
o Theorem 4.8, when the optimal convergence rate is obtained, the value of e shall be close to m, where m is the degree
of the polynomial used in the numerical method. This desired rate can be achieved especially when the grading parameter
near the endpoint Q of γ satisfies κQ = 2−

m
a for any 0 < a < 1 and the grading parameter near a vertex p of domain

atisfies κp < 2−
mω
π , where ω is the largest interior angle among all the vertices of Ω .

For Examples 5.1 and 5.2, we consider the finite element method based on P1 polynomials for problem (1.1) in a square
domain Ω = (0, 1)2.
12
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Fig. 7. Graded mesh and Union-Jack mesh. (a) and (b): the initial Union-Jack mesh and the mesh after one refinement. (c) and (d): the initial graded
mesh and the mesh after one refinement, κ = κQ1 = κQ2 = 0.2.

Table 1
Convergence history of the numerical solution in Example 5.1 with mesh refinements.
κ\j j = 2 j = 3 j = 4 j = 5

κ = 0.1 0.99 0.94 0.97 0.99
κ = 0.2 0.97 0.99 0.99 1.00
κ = 0.3 0.87 0.96 0.99 1.00
κ = 0.4 0.86 0.91 0.94 0.98
κ = 0.5 0.84 0.87 0.89 0.91
Union-Jack 0.46 0.47 0.49 0.49

Example 5.1 (Union-Jack Meshes and Graded Meshes). In this example, the line fracture γ = Q1Q2 has two vertices
Q1 = (0.25, 0.5) and Q2 = (0.75, 0.5). We use finite element methods on two types of triangular meshes: the Union-
Jack mesh with elements across the line fracture γ ; and the graded meshes conforming to γ defined in Algorithm 4.1
with different values of the grading parameter. The initial triangulations are given in (a) and (c) of Fig. 7, respectively,
where the Union-Jack mesh has 128 elements and the graded mesh has 64 elements. To refine the Union-Jack mesh, each
triangle is divided into four equal triangles.

Note that in the square domain, the vertices of the domain do not lead to corner singularities in H2. Therefore, we
se quasi-uniform meshes near the corners, which shall not affect the global convergence rate. However, in the region
cross γ , the solution merely belongs to H

3
2 −ϵ for any ϵ > 0. Union-Jack mesh does not resolve the singularity across

he fracture γ . Thus, on the Union-Jack mesh, the convergence rate (5.1) of the numerical solution shall be about 0.5. The
raded mesh conforms to γ and therefore resolves the solution singularity across γ . Based on Theorem 4.8, when the
rading parameter for the endpoints of γ satisfies κ := κQ1 = κQ2 = 2−

1
a < 0.5, the singular solution near Q1 and Q2

shall be well approximated, which yields the optimal convergence rate in the numerical approximation.
The convergence rates (5.1) associated with these two types of meshes are reported in Table 1. The first five rows are

the rates on graded meshes, and the last row contains data on the Union-Jack mesh. Here j is the number of refinements
from the initial mesh. It is clear that the rate on a sequence of Union-Jack meshes is suboptimal with e = 0.5. For graded
meshes, when κ < 0.5, the convergence rate is optimal with rate e = 1; and the convergence is not optimal when
κ = 0.5. These results are closely aligned with our aforementioned theoretical predication.

Example 5.2 (Graded Meshes for Different Fractures). This example is to test the convergence rate on a sequence of graded
meshes for problem (1.1) with the line fracture(s) at different locations. We shall use the linear finite element method
and the same square domain as in Example 5.1 for all the numerical tests in this example.

Test 1. Suppose we have a longer line fracture γ = Q1Q2 with two vertices Q1 = (0.1, 0.5), Q2 = (0.9, 0.5). See Fig. 8 for
the initial mesh and the graded mesh with κ = 0.2 after four refinements. The convergence rates associated with different
values of κ = κQ1 = κQ2 are reported in the second column of Table 2. Similar to the numerical tests in Example 5.1, these
results show that the convergence rate is suboptimal with e = 0.93 on the quasi-uniform mesh (κ = 0.5), but becomes
optimal (e = 1) on graded meshes for κ < 0.5.

Test 2. We consider a line fracture γ = Q1Q2 with the two vertices Q1 = (0.2, 0.2), Q2 = (0.8, 0.8). Here we solve the
problem (1.1) on graded meshes with the initial triangulation given in Fig. 9. The convergence rate is reported in the third
column of Table 2. We observe that convergence rate is suboptimal with e = 0.94 on quasi-uniform mesh (κ = 0.5), but
it is optimal (e = 1) on graded meshes for κ < 0.5. The results in Table 2, both from Test 1 and Test 2, are well predicted
by the theory as discussed above.

Test 3. In this test, we consider two line fractures with γ1 = Q1Q2, γ2 = Q3Q4 in Eq. (1.1). Here the vertices are
Q = (0.3, 0.1), Q = (0.3, 0.9), Q = (0.6, 0.1) and Q = (0.9, 0.9). The initial mesh is given in Fig. 10. Although two
1 2 3 4

13
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Fig. 8. Graded meshes with line fracture γ = Q1Q2 , Q1 = (0.1, 0.5), Q2 = (0.9, 0.5). (a) the initial mesh; (b) the mesh after four refinements,
= κQ1 = κQ2 = 0.2; (c) the numerical solution.

Fig. 9. Graded meshes with line fracture γ = Q1Q2 , Q1 = (0.2, 0.2), Q2 = (0.8, 0.8). (a) the initial mesh; (b) the mesh after four refinements,
= κQ1 = κQ2 = 0.2; (c) the numerical solution.

Table 2
Convergence history in Tests 1 & 2 of Example 5.2 on graded meshes.
κ\j j = 4 j = 5 j = 6 j = 7 j = 4 j = 5 j = 6 j = 7

κ = 0.1 0.97 0.98 0.99 1.00 0.97 0.99 0.99 1.00
κ = 0.2 0.98 0.99 1.00 1.00 0.97 0.99 1.00 1.00
κ = 0.3 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κ = 0.4 0.95 0.97 0.98 0.99 0.96 0.98 0.99 0.99
κ = 0.5 0.91 0.92 0.93 0.93 0.93 0.93 0.94 0.94

Table 3
Convergence history in Test 3 of Example 5.2 on graded meshes.
κ\j j = 4 j = 5 j = 6 j = 7

κ = 0.1 0.98 0.99 1.00 1.00
κ = 0.2 1.00 1.00 1.00 1.00
κ = 0.3 0.99 1.00 1.00 1.00
κ = 0.4 0.96 1.00 1.00 1.00
κ = 0.5 0.92 0.93 0.93 0.94

line fractures are imposed, we also observe similar convergence rates (see Table 3): the suboptimal convergence rate with
e = 0.94 on quasi-uniform meshes (κ = 0.5), and optimal (e = 1) on graded meshes as κ := κQ1 = κQ2 = κQ3 = κQ4 < 0.5.

In Test 1 and Test 2, we have implemented linear finite element methods proposed in Algorithm 4.1. These numerical
est results are in strong support of the estimate in Theorem 4.8. We chose the square domain to avoid the possible
orner singularity due to the non-smoothness of the domain, so that we can concentrate on the singular solution in the
14
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(

f
Ω

Q

Fig. 10. Graded meshes with two line fractures γ1 = Q1Q2 and γ2 = Q3Q4 . (a) the initial mesh; (b) the mesh after four refinements, κ = κQ1 =

κQ2 = κQ3 = κQ4 = 0.2; (c) the numerical solution.

Fig. 11. Quadratic finite element methods on graded meshes with the line fracture γ = Q1Q2 , Q1 = (0.3, 0.25), Q2 = (0.7, 0.25). (a) the initial mesh;
b) the mesh after four refinements, κ = κQ1 = κQ2 = 0.2; (c) the numerical solution.

Table 4
Convergence history of the P2 elements in Example 5.3 on graded meshes.
κ\j j = 4 j = 5 j = 6 j = 7

κ = 0.1 1.74 1.86 1.94 1.97
κ = 0.2 1.81 1.88 1.93 1.97
κ = 0.3 1.65 1.68 1.70 1.71
κ = 0.4 1.32 1.32 1.32 1.32
κ = 0.5 1.00 1.00 1.00 1.00

neighborhood of the line fracture. For general polygonal domains, the corner singularities should be taken into account.
A proper refinement algorithm near these corners are also given in Remark 4.2 and Theorem 4.8.

Example 5.3 (P2 Finite Element Methods). In this example, we consider the finite element method based on P2 polynomials
or Eq. (1.1). To minimize the effect of potential corner singularities, we solve the equation in the triangle domain

= ∆ABC with A = (0, 0), B = (1, 0) and C = (0.5, 1) and the line fracture γ = Q1Q2 with the two vertices
1 = (0.3, 0.25), Q2 = (0.7, 0.25). Since all the interior angles of Ω are less then π

2 , the solution is in H3 except for
the region that contains γ . See Fig. 11 for the initial triangulation that conforms to the fracture. Based on Theorem 4.8, to
achieve the optimal convergence rate in the numerical approximation, it is sufficient to use quasi-uniform meshes near
the vertices of the domain and use graded meshes with the grading parameter κ := κQ1 = κQ2 = 2−

2
a < 0.25 due to the

fact 0 < a < 1.
The convergence rate (5.1) of the numerical solution in this example is reported in Table 4. We observe that the

convergence rate is suboptimal on graded meshes with κ > 0.25. In particular, e = 1 on quasi-uniform meshes (κ = 0.5)
and 1 < e < 2 on graded meshes with κ = 0.3, 0.4. It is clear that the optimal convergence rate e = 2 is obtained on
graded meshes when κ < 0.25. These numerical results are clearly consistent with the theory developed in this paper.
15
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